復旦大學Advanced Science:一種腫瘤靶向納米平臺用于結直腸癌腹膜轉移的診療


【背景介紹】

結直腸癌極易出現腹膜轉移(CRC-PM),5年生存率<10%。由于散在多發,臨床上CRC-PM的示蹤與治療均極其困難。其基礎方案為腹腔熱灌注化療,腹腔置管并灌注熱化療液,通過高溫和化療殺傷腫瘤,雖為基礎治療策略,腹腔熱灌注與CRC-PM病理特征和治療需求卻并非完全契合,副作用顯著。臨床應用30年來,治療模式幾無實質進展。

當前主要存在兩大問題是缺乏針對腫瘤的治療精準性:腹膜表面積大,CRC-PM散在多發,異質性強;而腹腔灌注屬于典型的“大水漫灌”,灌注的短時間內藥物無法選擇性地僅富集于腫瘤組織,接觸更多的是健康組織;腹腔內大范圍加熱也會損傷正常組織。95%的接受腹腔熱灌注的病人均會出現副作用,如肝/腎/胃腸道毒性、骨髓抑制等,僅7%的病人可接受再次的腹腔熱灌注治療。因此藥物在腫瘤病灶高效濃集是解決當前CMC-PM治療困境的前提。因此需構建可靶向CRC-PM病灶的藥物遞釋系統,以增加藥物在腫瘤部位的蓄積,提高治療精準性。

此外,CMC-PM的病灶示蹤存在極大困難。當前臨床診斷方法包括:活檢病理(細胞學、組織病理學);腫瘤抗原(CEA、CA199、CA125);影像學(CT、MRI、PET-CT、超聲)等。各有所長,也各有所限:病理活檢有滯后性,一般意味著已演進至終末期;腫瘤抗原靈敏度和檢出度有限;MRI存在偽影、脂肪、結節干擾等。增強CT,作為當前臨床金標準,總確診率僅約40%,只能分辨出5 mm及以上轉移灶,對<5 mm的轉移灶只有11%的敏感性。有前瞻性研究報道,熒光輔助腹腔鏡技術可發現1 mm左右早期轉移灶,但仍存在健康組織和腫瘤組織難以分辨的問題。因此,亟待發展一種“Off-to-On”型近紅外熒光探針體系,用于在腫瘤特異微環境下激活,來區分健康和腫瘤組織。

【成果簡介】

基于此,復旦大學藥學院的孫濤副教授(第一作者)、蔣晨教授(通訊作者)遵循CRC-PM基本治療原則,從腫瘤固有特征出發,綜合藥劑學、有機化學、材料學、影像學等手段,以分子設計為基礎工具,以氧化型抗壞血酸為小分子靶向功能基團,構建了CRC-PM腫瘤靶向的固載奧沙利鉑的聚合物膠束,實現GLUT1介導的藥物的腫瘤富集,微環境刺激下奧沙利鉑及光診療劑的釋放和基于此的原位光熱效應,實現了腫瘤病灶示蹤,提高了治療精準性,最終實現化療增敏、藥物增滲及定點熱療。近日,相關成果以《一種多功能診療平臺用于結直腸癌腹膜轉移的病灶追蹤和光熱促進化療增敏》(A Versatile Theranostic Platform for Colorectal Cancer Peritoneal Metastases: Real-Time Tumor-Tracking and Photothermal-Enhanced Chemotherapy)為題,在線發表于《先進科學》(Advanced Science)上。

【圖文解讀】

圖一、一種腫瘤靶向納米平臺用于結直腸癌腹膜轉移的診療示意圖

圖二、本課題設計的探針概念驗證

A)S-DYE與GSH反應生成DYE過程的化學結構變化;B)DYE的S1態的前線分子軌道以及電子云分布;C)S-DYE的S1態的前線分子軌道以及電子云分布;D)惰性的C-DYE無法與GSH反應生成DYE;E)DYE及S-DYE在含水溶液中的吸收光譜; F)S-DYE在GSH存在下熒光增強結果;G)C-DYE在GSH存在下熒光基本不變結果;H)在GSH存在下的off-to-on動力學研究;I~J)酶標儀檢測S-DYE與HCT-116細胞孵育后不同時間點的熒光強度及半定量結果。

圖三、膠束的表征及藥物釋放動力學研究

膠束的組分構成及制備過程; B)膠束構建材料CMC值表征;C)空膠束、載探針膠束在4中、載探針膠束在血清中的ζ電位; D) 在4℃下放置一段時間后,載藥膠束在PBS或血清中的大小變化;E)載藥膠束TEM表征結果;F)載藥膠束元素分布結果;G)GPC表征的Vc存在下合成的聚合物材料分子量變化截圖;H)Vc存在下膠束粒徑變化結果;I)奧沙利鉑釋放動力學

圖四、細胞水平評價

不同靶向功能基團摻雜比對靶向效果的影響;B)采用不同的抑制條件包括渥曼青霉素、氯丙嗪、菲律賓菌素、過量D-葡萄糖和4 ℃處理,通過流式確定細胞攝取途徑;C)不同時間內off-to-on過程的研究;D)不同孵育時間DPPtP/SD的細胞攝取共聚焦成像(比尺顯示5 μm)和相應的半定量結果;E)本課題涉及到的SO2探針的歷;F)本平臺SO2釋放動力學;G)在細胞水平,熒光強度的DYE濃度依賴性;H)在細胞水平,SO2釋放的DYE濃度依賴性;I)不同濃度下ROS水平變化。

圖五、體內靶向性評價

圖六、抗腫瘤藥效結果。

在37 oC 下,HCT-116細胞經不同制劑組處理24 h后,利用CCK-8方法檢測得到的細胞生存曲線;A)在43 oC 下,HCT-116細胞經不同制劑組處理24 h后,利用CCK-8方法檢測得到的細胞生存曲線;在荷結直腸癌腹膜轉移原位瘤模型鼠上,經不同制劑組處理后的C)小鼠體重變化曲線;D)小鼠生存曲線(n=8);E)利用生物發光表征小鼠腫瘤演進情況;生物發光半定量的F)匯總性和G)獨立統計結果(n=6);在荷結直腸癌腹膜轉移原位瘤模型鼠上,經不同制劑組處理后的H)轉移灶數目;I)腹水體積;J)剝離腫瘤總重量;K)腹水中紅細胞數目(n=6);L)利用TUNEL原位檢測治療后腫瘤組織中細胞凋亡情況(比例尺為100 μm)。

圖七、生物安全性評價。

A)在37 oC 下,人腎上皮HEK-293細胞利用不同制劑組處理24 h后,利用CCK-8方法檢測得到的細胞生存曲線;B)在荷結直腸癌腹膜轉移原位瘤模型鼠上,經不同制劑組處理后的腹水中紅細胞數目(n=6);C)在荷結直腸癌腹膜轉移原位瘤模型鼠上,經不同制劑組處理后的心肝脾肺腎的免疫組化分析(比例尺為50 μm);在荷結直腸癌腹膜轉移原位瘤模型鼠上,經不同制劑組處理后的D)白蛋白;E)轉氨酶;F)尿素;G)谷草轉氨酶;H)血清堿性磷酸酶;I)肌酐水平(n=3)。

【總結】

綜上所述,不同于與傳統的診療模式,在本文中作者提出了一種涉及一種利用原位光熱技術促進腫瘤細胞凋亡的策略。利用一種負載奧沙利鉑和光熱分子的靶向膠束,實現向腫瘤的特異性遞送和蓄積。在近紅外光照下,光熱分子原位產生熱量,增強奧沙利鉑化療效果,同時降低副作用。本設計利用原位光熱技術促進腫瘤細胞凋亡的策略,有望為高效CRC-PM腫瘤診療提供新方法。

復旦大學藥學院藥劑學系孫濤副教授和蔣晨教授,分別為本項工作的第一作者和通訊作者。本研究獲國家自然科學基金重大研究計劃培育項目及重點項目的資助。

論文鏈接:https://doi.org/10.1002/advs.202102256

【作者簡介】

本文作者為復旦大學藥學院蔣晨教授團隊

蔣晨教授:國家杰青,目前擔任復旦大學藥學院藥劑學系(國家重點學科)主任、智能化遞藥教育部重點實驗室主任。研究方向主要集中在腦靶向、腫瘤靶向等藥物遞送系統的設計、構建和評價的基礎應用研究。

孫濤副教授:復旦大學引進人才,復旦2025卓學計劃獲得者,上海科委市揚帆計劃人才、上海人社局人才發展資金。研究方向為利用分子設計構建功能型藥物遞送系統,采用刺激敏感型動態鍵,對話于疾病微環境,實現藥物高效負載與智能釋放。

團隊主頁:http://smartdds.fudan.edu.cn/jiangchen/Index.aspx

【近年來發表論文列表】

2010年來, 在國際重要學術期刊上發表多篇高質量SCI 論文, 其中IF>10 的通訊作者論文39篇, IF>8 的論文>60%. 包括下列著名國際刊物Advanced Materials, Advanced Functional Materials, Advanced Science, ACS Nano, Nano Letters, JACS, Biomaterials, Small和Journal of Controlled Release等, 代表性論文如下:

  1. Li C, Sun T, Jiang C*. Recent advances in nanomedicines for the treatment of ischemic stroke [J]. Acta Pharmaceutica Sinica B, 2020. https://doi.org/10.1016/j.apsb.2020.11.019
  2. Liu, PX., Zhang, TY., Chen, QJ., Li, C., Chu, YC., Guo, Q., Zhang, YJ., Zhou, WX., Chen, HY., Zhou, Z., Wang, Y., Zhao, ZH., Luo, YF., Li, XW., Song, HL., Su, BY., Li, CF., Sun, T., Jiang, C.*, Biomimetic Dendrimer–Peptide Conjugates for Early Multi‐Target Therapy of Alzheimer's Disease by Inflammatory Microenvironment Modulation. Adv. Mater. 2021, 2100746. https://doi.org/10.1002/adma.202100746
  3. Chen, QJ., Sun, T. & Jiang, C*. Recent Advancements in Nanomedicine for ‘Cold’ Tumor Immunotherapy. Nano-Micro Lett. 13, 92 (2021). https://doi.org/10.1007/s40820-021-00622-6
  4. Guo Q, Chen QJ, Zhang YJ, Zhou WX, Li XW, Li C, Zhang YW, Chen HY, Liu PX, Chu YC, Sun T, Jiang C*. Click-Nucleic-Acid-Containing Codelivery System Inducing Collapse of Cellular Homeostasis for Tumor Therapy through Bidirectional Regulation of Autophagy and Glycolysis. ACS Appl Mater Interfaces. 2020 Dec 30;12(52):57757-57767. doi: 10.1021/acsami.0c18361.
  5. Zhang YW, Jiang C*. Postoperative cancer treatments: In-situ delivery system designed on demand. Journal of Controlled Release. 2020 Dec 22:S0168-3659(20)30762-8. doi: 10.1016/j.jconrel.2020.12.038.
  6. Zhou WX, Zhou Y, Chen XL, Ning TT, Chen HY, Guo Q, Zhang YW, Liu PX, Zhang YJ, Li C, Chu YC, Sun T, Jiang C*, Pancreatic cancer-targeting exosomes for enhancing immunotherapy and reprogramming tumor microenvironment, Biomaterials, Volume 268, 2021, 120546, ISSN 0142-9612, https://doi.org/10.1016/j.biomaterials.2020.120546
  7. Chen, QJ., He, YQ., Wang, Y., Li, C., Zhang, YJ., Guo, Q., Zhang, YW., Chu, YC., Liu, PX., Chen, HY., Zhou, Z., Zhou, WX., Zhao, ZH., Li, XM., Sun, T., Jiang, C.*, Penetrable Nanoplatform for “Cold” Tumor Immune Microenvironment Reeducation. Advanced. Science. 2020, 2000411. https://doi.org/10.1002/advs.202000411
  8. Sun T, Ding XH, Wang XF, Zhang K, Zhang GP, Liang DH, Yu KJ, Chu YC, Chen QJ, Jiang C*. Carry-On Nitric-Oxide Luggage for Enhanced Chemotherapeutic Efficacy, Nano Letters, 2020. DOI: 10.1021/acs.nanolett.0c01532
  9. Li C, Xie ZC, Chen QJ, Zhang YJ, Chu YC, Guo Q, Zhou WX, Zhang YW, Liu PX, Chen HY, Jiang C*, Sun KY*, Sun T*. Supramolecular Hunter Stationed on Red Blood Cells for Detoxification Based on Specific Molecular Recognition, ACS Nano. 2020. DOI: 10.1021/acsnano.0c01119
  10. Sun T, Zhang GP, Guo ZY, Chen QJ, Zhang YJ, Chu YC, Guo Q, Li C, Zhou WX, Zhang YW, Liu PX, Chen HY, Yu HJ, Jiang LP, Jiang C*, Co-delivery of Cu(I) chelator and chemotherapeutics as a new strategy for tumor theranostic, Journal of Controlled Release, Volume 321,2020, 483-496,
  11. Guo Q, He X, Li C, He Y, Peng Y, Zhang Y, Lu Y, Chen X, Zhang Y, Chen Q, Sun T, Jiang C*. Dandelion‐Like Tailorable Nanoparticles for Tumor Microenvironment Modulation,Advanced Science, 2019, 1901430.
  12. Sun T, Zhang GP, Wang QB, Guo ZY, Chen QJ, Chen XL, Lu YF, Zhang Y, Zhang Y, Guo Q, Gao X, Cheng YZ, Chen Jiang*. Pre-blocked molecular shuttle as an in-situ real-time theranostics, Biomaterials,2019,204, 46-58,
  13. Liu LS, Chen QJ, Ruan CH, Chen XL, He X, Zhang Y, Zhang YJ, Lu YF, Guo Q, Zhou WX, Li C, Sun T, Jiang C*. Nano-engineered lymphocytes for alleviating suppressive tumor immune microenvironment, Applied Materials Today, 2019, 273-279
  14. Zhang Y, Zhang YJ, Guo Q, Guo ZY, Chen XL, Liu LS, Li C, Chen QJ, He X, Lu YF, Sun T, Huang YZ, and Jiang C*. Trained Macrophage Bioreactor for Penetrating Delivery of Fused Antitumor Protein. ACS Applied Materials & Interfaces, 2019, 11 (26), 23018-23025
  15. Chen XL,Zhou WX, Chen QJ, Sun T, Lu YF, Zhang YJ, Guo Q, Li C, Zhang Y, Liang C, Shi S, Yu XJ, Jiang C*. Codelivery Nanosystem Targeting the Deep Microenvironment of Pancreatic Cancer. Nanoletter, 2019, 9b00374
  16. Lu YF, Li C, Chen QJ, Liu PX, Guo Q, Zhang Y, Chen XL, Zhang YJ, Zhou WX, Liang DH, Zhang YW, S Bun T, Lu WG*, Jiang C*. Microthrombus‐Targeting Micelles for Neurovascular Remodeling and Enhanced Microcirculatory Perfusion in Acute Ischemic Stroke. Advanced Materials, 2019, 1808361
  17. Guo Q, Li C, Zhou WX, Chen XL, Zhang Y, Lu YF, Zhang YJ, Chen QJ, Liang DH, Sun T, Jiang C*. GLUT1-mediated effective anti-miRNA21 pompon for cancer therapy. Acta Pharmaceutica Sinica B 2019;9(4):832–842
  18. Chen QJ, Liu LS, Lu YF, Chen XL, Zhang YJ, Zhou WX, Guo Q, Li C, Zhang YW, Zhang Y, Liang DH, Sun T, Jiang C*. Tumor Microenvironment‐Triggered Aggregated Magnetic Nanoparticles for Reinforced Image‐Guided Immunogenic Chemotherapy. Advanced Science, 2019 Jan 29;6(6):1802134.
  19. Zhang YJ, Zhu X, Chen XL, Chen QJ, Zhou WX, Guo Q, Lu YF, Li C, Zhang Y, Liang DH, Sun T, Wei XB, Jiang C*. Activated Platelets-Targeting Micelles with Controlled Drug Release for Effective Treatment of Primary and Metastatic Triple Negative Breast Cancer. Advanced Functional Materials, 2019, 29, 13, 1806620.
  20. Lu YF, Guo ZY, Zhang YJ, Li C, Zhang Y, Guo Q, Chen QJ, Chen QJ, He X, LS, Ruan CH, Sun T, Ji B, Lu WG, Jiang C*. Microenvironment remodeling micelles for Alzheimer’s disease therapy by early modulation of activated microglia. Advanced Science, 2018, 1801586
  21. He X, Cai KM, Zhang Y, Lu YF, Guo Q, Zhang YJ, Liu LS, Ruan CH, Chen QJ, Chen XL, Li C, Sun T, Cheng JJ*, Jiang C*. Dimeric Prodrug Self-Delivery Nanoparticles with Enhanced Drug Loading and Bioreduction Responsiveness for Targeted Cancer Therapy. ACS Appl. Mater. Interfaces, 2018, 10 (46), 39455–39467.
  22. He X, Chen XL, Liu LS, Zhang Y, Lu YF, Zhang YJ, Chen QJ, Ruan CH, Guo Q, Li C, Sun T, Jiang C*. Sequentiallygered nanoparticles with tumor penetration and intelligent drug release for pancreatic cancer therapy. Advanced Science, 2018, 1701070.
  23. Zhang Y, Cai KM, Li C, Guo Q, Chen QJ, He X, Liu LS, Zhang YJ, Lu YF, Chen XL, Sun T, Huang YZ, Cheng JJ, Jiang C*. Macrophage membrane-coated nanoparticles for tumor-targeted chemotherapy. Nano Letters, 2018, 18, 1908-1915.
  24. Zhang YJ, Guo ZY, Cao ZL, Zhou WX, Zhang Y, Chen QJ, Lu YF, Chen XL, Guo Q, Li C, Liang DH, Sun T, Jiang C*. Endogenous albumin-mediated delivery of redox responsive micelles for targeted cancer therapy. Biomaterials, 2018, 183, 243-257.
  25. Chen XL, Wang QB, Liu LS, Sun T, Wenxi Zhou, Chen QJ, Lu YF, He X, Zhang Y, Zhang YJ, Ruan CH, Guo Q, Chao Li, Jiang C*. Double-sided effect of tumor microenvironment on platelets targeting nanoparticles. Biomaterials, 2018, 183, 258-267.
  26. Sun T, Zhang GP, Wang QB, Chen QJ, Chen XL, Lu YF, Liu LS, Zhang Y, He X, Ruan CH, Zhang YJ, Guo Q, Jiang C*. A targeting theranostics nanomedicine as an alternative approach for hyperthermia perfusion. Biomaterials, 2018,183: 268-279.
  27. He X, Zhang JX, Li C, Zhang Y, Lu YF, Zhang YJ, Liu LS, Ruan CH, Chen QJ, Chen XL, Guo Q, Sun T, Cheng JJ*, Jiang C*. Theranostics, 2018, 8 (18), 4884-4897.
  28. Liu LS, Chen QJ, Ruan CH, Chen XL, Zhang Y, He X, Zhang YJ, Lu YF, Guo Q, Sun T, Wang H*, Jiang C*. Platinum-based nanovectors engineered with immune-modulating adjuvant for inhibiting tumor growth and promoting immunity. Theranostics, 2018, 8 (11), 2974-2987.
  29. Ruan CH, Liu LS, Wang QB, Chen XL, Chen QJ, Lu YF, Zhang Y, He X, Zhang YJ, Guo Q, Sun T, Jiang C*. Reactive oxygen species-biodegradable gene carrier for the targeting therapy of breast cancer. ACS Applied Materials & Interfaces, 2018, 10 (12), 10398-10408.
  30. Zhang YJ, Sun T, Jiang C*. Biomacromolecules as carriers in drug delivery and tissue engineering. Acta Pharmaceutica Sinica B, 2018, 8 (1), 34-50.
  31. Ruan CH, Liu LS, Lu YF, Zhang Y, He X, Chen XL, Zhang YJ, Chen QJ, Guo Q, Sun T*, Jiang C*. Substance P-modified human serum albumin nanoparticles loaded with paclitaxel for targeted therapy of glioma. Acta Pharmaceutica Sinica B, 2018, 8 (1), 85-96.
分享到