全新OMN材料,“一個演員,兩個角色”!!在鈣鈦礦薄膜制備過程中同時實現結晶調控和缺陷鈍化,為客制化功能材料提供了新方法。
一、?【導讀】 ?
盡管通過不同的策略,鈣鈦礦太陽能電池的光伏性能得到了極大的改善,但與傳統結構相比,在一致性和效率方面仍有很大差距。目前被廣泛接受的鈍化,鈣鈦礦缺陷的方法以及,鈣鈦礦晶粒的可控生長仍然是進一步提高實際應用設備性能的挑戰。在這項工作中,韓國國立Pukyong?National?University?的Fengwu?Liu(第一作者),Sung Heum Park(通訊作者)等人設計并開發了多功能氧基封端melem納米粒子(OMN)改性劑,并通過反溶劑工程將其加入到了鈣鈦礦中。OMN 的大比表面積確保了通過調節結晶過程并通過反溶劑徹底鈍化大量缺陷來生產出高質量的鈣鈦礦薄膜。melem納米粒子提高了 PSC 的光伏性能。此外,高質量的鈣鈦礦薄膜和出色的缺陷鈍化相結合,提高了器件的穩定性。
二、【成果掠影】
相關研究成果以“Oxyl-terminated Melem Nanoparticles as Crystallization Modulators and Passivating Anchors for High-Performance Perovskite Solar Cells”為題發表在Nano?Energy上。韓國國立釜慶大學(Pukyong?National?University)Fengwu?Liu為一作,Sung Heum Park教授為通訊作者。
三、【核心創新點】
1.采用自上而下的方法,由氮化碳成功合成了功能化melem納米顆粒。
2.定制的納米粒子實現了鈣鈦礦結晶的調節和缺陷鈍化。
3.通過納米粒子較大的比表面積實現最有效的接觸反應。
4.有效提升鈣鈦礦倒置太陽能電池器件性能。
四、【數據概覽】
Fig. 1. (a) Schematic diagram of OMN preparation process. (b)XRD of CCN. (c) FTIR of the powder of CCN and OMN. SEM (d) and (e) TEM images of CCN. (f) TEM of OMN. (g) TEM-EDS mappings of OMN.
Fig. 2. (a) OMN molecular structure and visualization of the ESP result; (b) A schematic illustration of the interaction between OMN and perovskite; (c) Theoretical calculation of molecular interaction between the perovskite precursors (MAI, PbI2) and OMN. The formation energies of OMN-MAI, OMN-PbI2, and PbI2-MAI molecular structures, calculated by DFT.
Fig. 3. (a) Schematic diagram of the preparation process of MA-based perovskite thin film; SEM (b) and XRD (c) of the MA-based perovskite film without and with OMN before the annealing. SEM (d) and XRD (e) of the MA-based perovskite film without and with OMN after annealing.
Fig. 4. FTIR spectra of (a) PbI2, OMN and OMN with PbI2; (b) MAI, OMN and OMN with MAI. XPS spectra of (c) C 1s, (d) Pb 4f and (e) I 3d with and without OMN; NMR spectra of (f) OMN, MAI and OMN with MAI, (g) OMN and OMN with PbI2 and (h) OMN, MAPbI3 and OMN with MAPbI3.
Fig. 5. SEM (a), XRD (b), PL (c) and (d) UV–vis absorption spectra of MA-based perovskite film prepared with different OMN concentrations on glass. (e) UV–vis absorption spectra of the control and the OMN-perovskite film, respectively. (f) Contact angle of MA-based control and with 1.0mg/ml OMN-perovskite film on CB.
Fig. 6. (a) Schematic structure of the MA-based device. Cross-sectional SEM of the (b) Control and (c) modified MA-based device. J-V curves of the PSC devices using different OMN concentrations optimized for (d) MA-based and (g) CsFAMA-based active layers. Forward and reverse J-V scans of the best performing control devices and OMN-modified (e) MA-based and (h) CsFAMA-based PSCs. IPCE spectra and integrated photocurrents of the best performing control devices and OMN-modified (f) MA-based and (i) CsFAMA-based PSCs.
Fig. 7. Different irradiation intensities for MA-based device of (a) JSC?and (b) Voc. (c) Dark J-V curves for MA-based control and OMN-modified PSCs. Dark J–V characteristics of MA-based (d) control and (e) OMN-modified device (the inset shows the device structure). (f) Stability testing of MA-based PSC devices at room temperature and in a nitrogen environment (H2O 30 ppm, O2?30 ppm).
五、【成果啟示】
客制化具有多功能鈍化能力的氧基封端 melem 納米粒子,并將其用作改性劑。然后,通過與抗溶劑工程相結合,將這些納米顆粒融入到了鈣鈦礦層中。這項工作強調了OMN 如何促進中間相的生成,以及如何在未退火階段減緩鈣鈦礦晶體的結晶速度。同時,在退火過程中,OMN 中的各種官能團可鈍化鈣鈦礦薄膜中的各種內部缺陷,從而顯著降低缺陷密度。因此,基于 MA 和 CsFAMA 器件的 p-i-n 型鈣鈦礦太陽能電池的 JSC、VOC?和 FF 都得到了有效改善。
在 DFT 計算的幫助下,這項研究提供了一種新方法,通過制備定制功能化納米粒子,實現更有效的鈍化和更高質量的鈣鈦礦薄膜。它證實了通過設計正確的添加劑來幫助器件制造,可以在 P-I-N 結構器件中實現穩定的光伏性能。
文獻鏈接:“Oxyl-terminated Melem Nanoparticles as Crystallization Modulators and Passivating Anchors for High-Performance Perovskite Solar Cells”(Nano?Energy,https://doi.org/10.1016/j.nanoen.2023.109220)
本文由W供稿
文章評論(0)