專題報道:Imide-Orthoborate雙鹽電解質體系抑制鋰枝晶及提升鋰金屬庫侖效率的研究


1、引言

隨著先進便攜式電子產品、電動汽車等的快速發展,對于電池的能量密度提出了更高的要求。金屬鋰具有高的理論比容量(3860 mAh/g)及-3.04 V 的超負電極電勢(相對標準氫電極),是理想的高比能量二次電池負極材料。因此,開發基于金屬鋰負極的高比能量二次電池如鋰金屬電池、鋰空氣電池及鋰硫電池等重新受到關注,并成為近年來國內外化學電源領域的研究熱點。然而,金屬鋰作為負極使用時,在反復充放電過程中容易出現粉化、枝晶生長等問題,導致對應二次電池的循環性能極差、容量衰減迅速、庫侖效率低、極化嚴重;更為嚴重的是,鋰枝晶生長還會刺穿隔膜導致電池短路并可能引發嚴重的安全問題。

國內外研究現狀表明,鋰金屬負極性能的改善途徑主要包括:鋰金屬合金化;固體電解質;鋰金屬表面結構設計;有機電解液促進鋰金屬/電解質界面SEI膜穩定性。其中,通過優化有機電解液成分及改性添加劑促進鋰金屬/電解質界面SEI膜穩定性,被認為是抑制鋰枝晶生長、提升庫侖效率的最簡便、有效的途徑之一。

?2、成果介紹

近日,西南石油大學李星博士與美國西北太平洋國家實驗室許武博士、張繼光博士、鄭建明博士等在利用酰亞胺-硼酸鹽(Imide-Orthoborate)雙鹽電解質體系抑制鋰枝晶生長、提升鋰金屬庫侖效率方面開展了較系統的研究工作。

(1)首先采用第一性原理計算(DFT)與實驗相結合的方法,比較研究了雙三氟甲烷磺酰亞胺鋰-二草酸硼酸鋰(LiTFSI-LiBOB)、雙三氟甲烷磺酰亞胺-二氟草酸硼酸鋰(LiTFSI-LiDFOB)、雙氟磺酰亞胺鋰-二草酸硼酸鋰(LiFSI-LiBOB)、雙氟磺酰亞胺鋰-二氟草酸硼酸鋰(LiFSI-LiDFOB)四種酰亞胺-硼酸鹽雙鹽電解質體系對抑制鋰枝晶生長、提升鋰金屬庫侖效率的作用效果。研究結果表明,LiTFSI-LiBOB雙鹽電解質體系能夠發揮最優的效果。該研究成果以“Effects of Imide-Orthoborate Dual-Salt Mixtures in Organic Carbonate Electrolytes on the Stability of Lithium Metal Batteries”為題發表在ACS Appl. Mater. Inter. 2018, 10, 2469-2479(Xing Li, Jianming Zheng (共同一作), Mark H. Engelhard, Donghai Mei, Qiuyan Li, Shuhong Jiao, Ning Liu, ?Wengao Zhao, Ji-Guang Zhang(通訊作者), Wu Xu(通訊作者))。此外,為了更準確的測定鋰金屬負極的庫侖效率,還系統研究了隔膜的影響,研究結果表明聚乙烯(PE)膜是相對最穩定的隔膜體系。該研究成果以“Stability of Polymeric Separators in Lithium Metal Battery under Low Voltage Environment”為題,發表在J. Mater. Chem. A?2018, DOI: 10.1039/c7ta11259a(Xing Li, Jinhui Tao, Dehong Hu, Mark H. Engelhard, Wengao Zhao, Ji-Guang Zhang(通訊作者), Wu Xu(通訊作者))。

(2)基于上述研究基礎,又開展了LiPF6添加劑改性LiTFSI-LiBOB雙鹽電解質的研究工作。研究表明,適量的LiPF6添加劑可以誘導EC溶劑開環、聚合,使生成的SEI膜表面富含poly(CO3)成分,SEI膜表面由此變的致密、光滑,可以有效抑制鋰枝晶的生長。該研究成果以“Electrolyte additive enabled fast charging and?stable cycling lithium metal batteries”為題,發表在Nat. Energy?2017, 2, 17012(Jianming Zheng, Mark H. Engelhard, Donghai Mei, Shuhong Jiao, Bryant J. Polzin,?Ji-Guang Zhang(通訊作者)Wu Xu(通訊作者))。但是,該LiPF6改性Imide-Orthoborate雙鹽電解質體系對應的鋰金屬負極的庫侖效率仍不高,只有90.6%左右。

(3)為了進一步提升對應鋰金屬的庫侖效率,優化了LiTFSI-LiBOB雙鹽電解質體系中的溶劑比例,同時使用了組合添加劑(LiPF6 + VC + FEC),發現對應鋰金屬負極庫侖效率可提升至98.1%。該研究成果以“Dendrite-Free and?Performance-Enhanced Lithium Metal Batteries through Optimizing Solvent Compositions and Adding Combinational Additives”為題發表在Adv. Energy Mater.?2018, 1703022(Xing Li, Jianming Zheng(共同一作), Xiaodi Ren, Mark H. Engelhard, Wengao Zhao, Qiuyan Li, Ji-Guang Zhang(通訊作者), Wu Xu(通訊作者))。

?3、圖文導讀

表1 第一性原理計算表明,化學及電化學穩定性:LiTFSI+LiBOB >Li?TFSI+LiDFOB > LiFSI+LiDFOB > LiFSI+LiBOB(ACS Appl. Mater. Inter. 2018, 10, 2469-2479)。

Types of ? ? dual-salts Disproportionation reaction Reaction energies (kJ mol-1)
Electrochemical
?(two radicals)
Chemical
(two anions)
TFSI+BOB CF3SO2NSO2CF3 +(C2O4)B(O4C2)?→ CF3SO2NSO2OC(=O)C(=O)O + CF3B(O4C2) 487.7 517.9
TFSI+DFOB CF3SO2NSO2CF3 + ?(C2O4)BF2?→ CF3SO2NSO2OC(=O)C(=O)O + CF3BF2 244.6 326.9
FSI+BOB FSO2NSO2F + (C2O4)B(O4C2)?→ FSO2OC(=O)C(=O)O + FSO2NB(O4C2) 47.6 85.0
FSI+DFOB

FSO2NSO2F + (C2O4)BF2?→ FSO2OC(=O)C(=O)O + FSO2NBF2

97.1 204.8

 

圖1?對應鋰金屬二次電池(NMC||Li)循環穩定性:LiTFSI+LiBOB >Li?TFSI+LiDFOB > LiFSI+LiDFOB > LiFSI+LiBOB(ACS Appl. Mater. Inter. 2018, 10, 2469-2479)。

圖2 不同類型的隔膜在兩種典型電解液中測定的鋰金屬負極的庫侖效率,從中可以發現PE膜體現出相對最好的穩定性(J. Mater. Chem. A 2018, DOI: 10.1039/c7ta11259a)。

圖3?使用不同電解液對應的鋰金屬負極截面(a-c)及表面(d-f)的SEM圖片。

a, d(LiPF6/EC-DEC)、b, e(LiTFSI-LiBOB/EC-DEC)、c, f(LiTFSI-LiBOB+LiPF6/EC-DEC)。從圖中可以觀察到,使用LiPF6添加劑修飾的LiTFSI-LiBOB雙鹽電解液可以促進更穩定的SEI生長(Nat. Energy 2017, 2, 17012)。

圖4?使用單一添加劑與使用組合添加劑對應的鋰金屬負極的庫侖效率比較。

從圖中可以觀察到,使用組合添加劑(LiPF6+VC+FEC)對應鋰金屬負極的庫侖效率高達98.1%(Adv. Energy Mater.?2018, 1703022)。

圖5 使用不同添加劑對應的鋰金屬負極在100次循環后的表面SEM。

a. 使用LiTFSI-LiBOB+LiPF6/EC-EMC電解液; b. 使用LiTFSI-LiBOB+LiPF6+VC+FEC/EC-EMC(4:6)電解液; c. 使用LiTFSI-LiBOB+LiPF6+VC+FEC/EC-EMC(7:3)電解液。

從圖中可以觀察到,使用組合添加劑(LiPF6+VC+FEC)幾乎不會在鋰金屬表面產生鋰枝晶,此外,使用組合添加劑對應的鋰金屬電池的內阻也明顯小于使用單一添加劑(Adv. Energy Mater.?2018, 1703022)。

?4、小結

上述研究結果表明,在Imide-Orthoborate雙鹽電解質體系中,LiTFSI-LiBOB是化學及電化學相對最穩定的雙鹽電解質體系、能夠在鋰金屬表面形成無鋰枝晶、致密、穩定的SEI膜;通過利用LiPF6作為添加劑改性LiTFSI-LiBOB雙鹽體系,可以使生成的SEI膜展現出更薄、更致密、更穩定等特性;而使用LiPF6?+ VC + FEC組合添加劑改性的LiTFSI-LiBOB雙鹽體系,還可以使對應的鋰金屬負極的庫侖效率提升至98.1%左右。

文獻鏈接:

  1. Effects of Imide-Orthoborate Dual-Salt Mixtures in Organic Carbonate Electrolytes on the Stability of Lithium Metal Batteries, ACS Appl. Mater. Inter.,2018, 10, 2469-2479;
  2. Stability of Polymeric Separators in Lithium Metal Battery under Low Voltage Environment, J. Mater.Chem. A, DOI: 10.1039/c7ta11259a;
  3. Electrolyte additive enabled fast charging andstable cycling lithium metal batteries,Nat. Energy 2017, 2, 17012;
  4. Dendrite-Free and Performance-Enhanced Lithium Metal Batteries through Optimizing Solvent Compositions and Adding Combinational Additives, Adv. EnergyMater.2018, 1703022.

感謝西南石油大學李老師的供稿!

材料牛網專注于跟蹤材料領域科技及行業進展,如果您對于跟蹤材料領域科技進展,解讀高水平文章或是評述行業有興趣,點我加入編輯部。歡迎大家到材料人宣傳科技成果并對文獻進行深入解讀,投稿郵箱tougao@cailiaoren.com。

材料人重磅推出材料計算解決方案,組建了一支來自全國知名高校老師及企業工程師的科技顧問團隊,專注于為大家解決各類計算模擬需求。如果您有需求,歡迎掃以下二維碼提交您的需求。或點擊鏈接提交,或直接聯系微信客服(微信號:iceshigu)

分享到