Renew. Sust. Energ. Rev.?綜述:?復合能量收集技術:從材料、結構設計、系統集成到應用


【前言】

能量收集技術在實現自供電無線傳感節點(WSNs)和低功耗傳感設備可持續供電方面具有顯著發展潛力。近年來復合能量收集技術得到廣泛關注,通過合理俘獲多種環境能源和采用多種能量轉換機制,不僅可以有效提高空間利用效率,而且可以顯著提高功率輸出。復合能量收集技術在未來物聯網(IoT)時代具有諸多潛在應用前景,包括結構體健康監測、工業狀態監測、智能交通、人體健康監測、海洋工程和航天工程等。

近日《Renewable and Sustainable Energy Reviews》刊發綜述文章《Hybrid energy harvesting technology: From materials, structural design, system integration to applications》,對近年來的復合能量收集研究進展和代表性工作進行了全面綜述,重點介紹了振動能和熱能收集技術的換能機理、工作原理、典型結構、輸出性能和應用展望,并針對當前進展探討了該領域的創新、挑戰和潛在研究方向。文章共同第一作者為蘇州大學劉會聰教授和拉夫堡大學付海嶺教授,共同通訊作者為拉夫堡大學付海嶺教授、英國帝國理工學院Eric Yeatman教授與新加坡國立大學Chengkuo Lee教授。

文章鏈接:Hybrid energy harvesting technology: From materials, structural design, system integration to applications, Renewable and Sustainable Energy Reviews, 110473 (2020);?https://doi.org/10.1016/j.rser.2020.110473

圖一:能量轉換機制及其典型結構:(a)壓電,(b)電磁,(c)摩擦電,(d)熱電,和(e)熱釋電。

Figure?1

Energy conversion mechanisms and their typical configurations: (a) piezoelectric, (b) electromagnetic, (c) triboelectric, (d) thermoelectric, and (e) pyroelectric.

圖二:壓電能量收集器的典型結構構造:(a)矩形,(b)三角形,(c)錐形,(d)S形,(e)拱形和(f)彎張結構。

Figure 2

Typical structural configurations for PEHs including (a)?rectangular, (b) triangular, (c) taper, (d) S-shape, (e) arch-shape, and (f) flextensional structures.

圖三:電磁能量收集器的典型結構構造:(a)-(d)諧振式和(e)-(f)旋轉式。

Figure 3

Typical structural configurations for EMEHs including (a)-(d) resonant and (e)-(g) rotational structures.

圖四:摩擦電能量收集器的典型結構構造:(a)-(b)接觸分離式,(c)-(e)水平滑動式,(f)-(g)單電極式,和(h)-(i)獨立摩擦電層模式。

Figure 4

Typical structural configurations for TENGs including (a)-(b) contact-separation, (c)-(e) lateral-sliding, (f)-(g) single-electrode, and (h)-(i) freestanding triboelectric-layer modes.

圖五:熱電能量收集器的典型結構構造,包括(a)光致熱電,(b)柔性熱電,(c)可穿戴結構,(d)和(e)基于相變材料的熱電結構。

Figure 5

Typical structural configurations for TEHs, including (a) light-to-heat TEH, (b) flexible THE, (c) wearable THE, (d) and (e) PCM-based TEHs.

圖六:熱釋電能量收集器的典型結構構造與應用:(a)基于液體金屬的熱釋電;(b)尾氣熱回收;(c)熱釋電分解水;(d)微型熱管振動熱釋電;(e)振動熱源熱釋電。

Figure 6

Typical structural configurations and applicaitons for pyroelectric energy harvesters. (a) Liquid-metal based pyroelectric harvester, (b) pyroelectric harvester for exhaust gas heat recovery, (c) pyroelectric harvester for water splitting, (d) oscillating heat pipe-based harvester and (e) oscillating heat mass-based pyroelectric harvester.

圖七:基于結構梁(a)、(b)、(d)、(e)和基于振蕩質量(c)、(f)、(g)的壓電-電磁復合能量收集系統結構圖。

Figure 7

Configuration illustrations of the PE-EM hybrid systems based on beams (a), (b), (d) and (e) and based on oscillating mass (c), (f) and (g).

圖八:基于氣流(a)、(b)、(d)和聲能(c)的壓電-電磁復合能量收集系統結構圖。

Figure 8

Configuration illustration of the PE-EM hybrid systems for harvesting airflow (a), (b) and (d) and for collecting acoustic energy (c).

圖九:壓電-電磁復合能量收集系統功率調節的典型電源管理電路,包括典型功能塊(a)、實現方案(b)、以及完整的壓電-電磁電源管理方案(c)和(d)。

Figure 9

Typical power management circuits for regulating power from PE-EM hybrid systems, including typical function blocks (a), implementation solution (b) and one complete PE-EM solution (c) and (d).

圖十:基于(a)分離模式和(b)共存模式的壓電-摩擦電效應的復合能量收集系統結構和材料示意圖。

Figure 10

Configuration and material illustrations of the PE-TE hybrid systems driven by external force with (a) separated and (b) coexisted piezoelectric and triboelectric effects.

圖十一:振動和風致驅動的壓電-摩擦電復合能量收集系統結構示意圖

Figure 11

Configuration illustrations of the PE-TE hybrid systems driven by vibration and wind flow.

圖十二:基于彈簧質量、形變膜和磁浮結構的共振式電磁-摩擦電復合能量收集系統。

Figure 12

Resonant structures of the EM-TE hybrid systems, by employing spring-mass, deflected-membrane, and magnetic-floating structures.

圖十三:電磁-摩擦電復合能量收集系統的非共振和旋轉結構,用于(a)-(c)水波能量收集,(d)人類手腕運動收集,?以及(e)-(f)旋轉能量收集。

Figure 13

Non-resonant and rotational structures of the EM-TE hybrid systems, for (a)-(c) water wave energy harvesting, (d) human wrist-motion harvesting, and (e)-(f) rotation energy harvesting.

圖十四:基于(a)彈簧質量結構、(b)磁懸浮結構、(c)非共振磁性滾動球和(d)風車結構的壓電-電磁-摩擦電復合能量收集系統的配置圖。

Figure 14

Configuration illustrations of the PE-EM-TE hybrid systems by using (a) spring-mass structure, (b) magnetic levitation structure, (c) non-resonant magnetic rolling ball, and (d) windmill structure.

圖十五:其他類型的復合能量收集系統:(a) 光伏、熱電和熱水能源的復合能量收集器,(b)太陽能和機械能復合能量收集器,(c)壓電和熱釋電復合能量收集器,(d)可伸縮壓電和熱釋電能量收集器,以及(e)太陽能和電磁復合能量收集器。

Figure 15

Other type of hybrid energy harvesting systems. (a) Hybrid energy harvester from photovoltaic, thermoelectric and hot water energy, (b) hybrid solar and mechanical harvester, (c) hybrid piezoelectric and pyroelectric harvester, (d) stretchable piezoelectric and pyroelectric harvester and (e) hybrid solar and EM harvester.

圖十六:復合能量收集系統的各種能量源和應用前景展望。

Figure 16

Energy sources and application prospect for hybrid energy harvesting systems.

本文由作者團隊供稿。

分享到