AEM:通過氯化鋰溶后處理制備淺受體型缺陷Cu2ZnSn(S,Se)4太陽能電池
第一作者:Mingrui He, Xian Zhang, Jialiang Huang
通訊作者:Xiaojing Hao,?Jinhyeok Kim, Shiyou Chen, Jianjun Li
合作單位:新南威爾士大學,韓國全南國立大學,華東師范大學,悉尼大學,韓國光州科學技術院
背景介紹
銅鋅錫硫硒(CZTSSe)材料由于其低廉的價格,近年來成為薄膜太陽電池研究的熱點。然而,在合成CZTSSe過程中伴隨著大量晶體缺陷的產生,進而降低了電池的光電轉化效率。因此,如何有效調控缺陷是該領域的重要問題。
文章簡介
近日,新南威爾士大學Xiaojing Hao團隊,韓國全南國立大學Jinhyeok Kim團隊和華東師范大學Shiyou Chen團隊通過使用氯化鋰溶后處理CZTSSe吸收層,實現了更淺的受體型缺陷(LiZn),提高了P型摻雜,將CZTSSe太陽能電池效率提高至10.7%。本文通過納米尺度的化學分析(atom?probe tomography),電學表征分析(admittance spectra)和密度泛函理論(DFT)闡明了Li在CZTSSe摻雜機制。研究表明,通過該方法可實現Li在CZTSSe晶界和晶體內部的均勻摻雜,并實現10%以上的摻雜效率。0.006% 的Li元素摻雜量就能引入1017?cm-3的LiZn淺受主缺陷,從而顯著改變CZTSSe材料的P-型導電機制和太陽電池器件性能。該成果以題為“High Efficiency Cu2ZnSn(S,Se)4 Solar Cells with Shallow LiZn Acceptor Defects Enabled by Solution-Based Li Post-Deposition Treatment”發表在了Adv.?Eng. Mater.上。
圖文導讀
圖一 Li后處理方法
a)-d)LiCl溶液工藝示意圖及Li后處理方法
e)未處理的CZTSSe吸收層
f)Li摻雜的CZTSSe吸收層
圖二 Li在電池器件的分布
a) CZTSSe和b)鋰摻雜的CZTSSe太陽能電池的元素分布
Li在CZTSSe太陽能電池中的3D分布圖
圖三 電池器件光伏性能
a)電池器件的J-V曲線
b)電池器件的EQE曲線
c)電池器件的帶隙
d)電池器件的Drive level capacity profiling
e)電池器件的Suns-Voc
f)電池器件的Time-resolved photoluminescence
圖四 缺陷表征
a)-b)電池器件的Admittance spectra
c)電池器件的Arrhenius plots
d)電池器件的缺陷態密度
圖五 理論計算
a)不同Li相關缺陷的形成能
b)不同Li相關缺陷在帶隙的位置
c)LiZn?缺陷在晶格的位置
文獻鏈接:High Efficiency Cu2ZnSn(S,Se)4?Solar Cells with Shallow LiZn?Acceptor Defects Enabled by Solution‐Based Li Post‐Deposition Treatment.?Adv. Energy Mater.?2021, 2003783.?https://doi.org/10.1002/aenm.202003783
團隊在該領域的相關文獻推薦
1. Li, J., Huang, Y., Huang, J., Liang, G., Zhang, Y., Rey, G., ... & Green, M. A. (2020). Defect Control for 12.5% Efficiency Cu2ZnSnSe4 Kesterite Thin‐Film Solar Cells by Engineering of Local Chemical Environment.?Advanced Materials,?32(52), 2005268.
2. Liu, F., Zeng, Q., Li, J., Hao, X., Ho-Baillie, A., Tang, J., & Green, M. A. (2020). Emerging inorganic compound thin film photovoltaic materials: Progress, challenges and strategies.?Materials Today.
3. Tang, R., Wang, X., Lian, W., Huang, J., Wei, Q., Huang, M., ... & Chen, T. (2020). Hydrothermal deposition of antimony selenosulfide thin films enables solar cells with 10% efficiency.?Nature Energy,?5(8), 587-595.
4. Zeng, Q., Lai, Y., Jiang, L., Liu, F., Hao, X., Wang, L., & Green, M. A. (2020). Integrated Photorechargeable Energy Storage System: Next‐Generation Power Source Driving the Future.?Advanced Energy Materials,?10(14), 1903930.
5. Deng, H., Zeng, Y., Ishaq, M., Yuan, S., Zhang, H., Yang, X., ... & Tang, J. (2019). Quasiepitaxy strategy for efficient full‐inorganic Sb2S3 solar cells.?Advanced Functional Materials,?29(31), 1901720.
6. Cui, X., Sun, K., Huang, J., Yun, J. S., Lee, C. Y., Yan, C., ... & Hao, X. (2019). Cd-Free Cu 2 ZnSnS 4 solar cell with an efficiency greater than 10% enabled by Al 2 O 3 passivation layers.?Energy & Environmental Science,?12(9), 2751-2764.
7. Liu, X., Zhang, Y., Shi, L., Liu, Z., Huang, J., Yun, J. S., ... & Hao, X. (2018). Exploring Inorganic Binary Alkaline Halide to Passivate Defects in Low‐Temperature‐Processed Planar‐Structure Hybrid Perovskite Solar Cells.?Advanced Energy Materials,?8(20), 1800138.
8. Yan, C., Huang, J., Sun, K., Johnston, S., Zhang, Y., Sun, H., ... & Hao, X. (2018). Cu 2 ZnSnS 4 solar cells with over 10% power conversion efficiency enabled by heterojunction heat treatment.?Nature Energy,?3(9), 764-772.
9. Park, J., Huang, J., Yun, J., Liu, F., Ouyang, Z., Sun, H., ... & Hao, X. (2018). The Role of Hydrogen from ALD‐Al2O3 in Kesterite Cu2ZnSnS4 Solar Cells: Grain Surface Passivation.?Advanced Energy Materials,?8(23), 1701940.
10. Gu, Y., Shen, H., Ye, C., Dai, X., Cui, Q., Li, J., ... & Lin, H. (2018). All‐Solution‐Processed Cu2ZnSnS4 Solar Cells with Self‐Depleted Na2S Back Contact Modification Layer.?Advanced Functional Materials,?28(14), 1703369.
11. Liu, F., Yan, C., Huang, J., Sun, K., Zhou, F., Stride, J. A., ... & Hao, X. (2016). Nanoscale microstructure and chemistry of Cu2ZnSnS4/CdS interface in kesterite Cu2ZnSnS4 solar cells.?Advanced Energy Materials,?6(15), 1600706.
12. Sun, K., Yan, C., Liu, F., Huang, J., Zhou, F., Stride, J. A., ... & Hao, X. (2016). Over 9% efficient kesterite Cu2ZnSnS4 solar cell fabricated by using Zn1–xCdxS buffer layer.?Advanced Energy Materials,?6(12), 1600046.
本文由作者投稿。
文章評論(0)