潘曹峰Nano Energy:WS2/CsPbBr3范德華異質結平面光電探測器具有超高開關比和壓電光電子學效應誘導的應變門控特性


潘曹峰Nano Energy:WS2/CsPbBr3范德華異質結平面光電探測器:具有超高開關比和壓電光電子學效應誘導的應變門控特性

【引言】

??二維(2D)材料作為一種具有巨大潛力的新型材料,由于其超薄的厚度、可調的帶隙和高遷移率,在電子和光電領域得到了廣泛的研究。層間范德華力(vdW)和原子平面界面有助于二維材料擺脫異質結構中晶格匹配的限制。由于二維材料與各種尺寸材料結合的可能性很大,因此可以制造出最先進的光電異質結構。受這些的啟發,具有顯著光電性能的鹵化物鈣鈦礦被用于同二維材料組裝異質結構。在鈣鈦礦和二維材料之間有效和超快的電荷載流子轉移已被廣泛證明,并已被證明能顯著改善平面光電探測器的性能。然而,在不調制柵極電壓的情況下,平面二維材料/鈣鈦礦光電探測器的暗電流很大,開關比低,待機功率大,嚴重制約了二維材料/鈣鈦礦光電探測器的應用。

??之前研究者報道的關于二維材料/鈣鈦礦光電探測器往往使用了通過化學氣相沉積或溶液法合成的二維材料。機械剝離更容易獲得純度和清潔度更高的二維薄片,機械剝離的二維薄片晶體質量好、缺陷少、遷移率高,制備的光電探測器具有更高的性能和更低的能量損耗。此外,之前報道的異質結構絕大多數使用有機-無機雜化鹵化物-鈣鈦礦,這類鈣鈦礦不穩定的特性嚴重限制了器件的制備。并且這類器件通常使用多晶、量子點和多單晶等取向無序的鈣鈦礦,因此通過鹵化物鈣鈦礦的壓電特性來實現壓電電子學效應或壓電光電子學效應是一個挑戰。全無機鈣鈦礦單晶(CsPbBr3)具有穩定性好,無晶界,缺陷態密度低,載流子擴散時間長等有點,用于構建高性能器件具有巨大的潛力。近年來,人們已經報道了CsPbBr3的壓電性能,但尚未報道CsPbBr3引起的壓電效應或壓電光電效應。壓電電子學效應和壓電光電子學效應使傳統器件不僅具有更好的性能,而且還具有多功能集成,對可穿戴電子器件、人機界面、物聯網等都至關重要。考慮到機械剝離的二維薄片和全無機鹵化物鈣鈦礦單晶的優良性能,利用這兩種結構塊可以潛在地實現一種高性能、低功耗、多功能集成的vdWH光電探測器。

【成果簡介】

??近日,中國科學院北京納米能源與納米系統研究所潘曹峰研究員在高性能的二維材料/鈣鈦礦光電探測器領域取得突破性進展,以題為“WS2/CsPbBr3 van der Waals heterostructure planar photodetectors with ultrahigh on/off ratio and piezo-phototronic effect-induced strain-gated characteristics”發表在Nano Energy上。該工作首次采用機械剝離的2D-WS2納米片和單晶1D- CsPbBr3納米線構建了WS2/ CsPbBr3-vdWH平面光電探測器。該探測器的開關比高達109.83,響應度和探測率分別達到57.2 A/W和1.36×1014瓊斯。獲得高性能的同時,該器件的極低的暗電流和低的工作電壓可以有效地降低功耗。此外,研究者還基于柔性襯底實現了可通過壓電光電子學效應調制的,同時具有多功能集成特性的WS2/ CsPbBr3-vdWH光電探測器。

【圖文簡介】

1 WS2/CsPbBr3-vdWS組裝工藝及器件結構

(a) 器件構建步驟示意圖;

(b-c) 所選的用于制造vdWH的2D WS2薄片和1D CsPbBr3納米線的光學顯微照片;

(d) 組裝好的WS2/CsPbBr3-vdWH的光學顯微照片(表面覆蓋有用于電子束曝光的PMMA);

(e-f) WS2/CsPbBr3-vdWH平面光電探測器的光學顯微照片和假彩色掃描電鏡圖像。需要說明的是,本工作報道的器件結構是以WS2為單一導電溝道的平面結構,因而與CsPbBr3納米線交叉的金屬觸點在這項工作中是沒有用處的。圖中的所有刻度條均為5微米。

2 WS2的光譜圖和能帶結構

(a) CsPbBr3和WS2/ CsPbBr3的PL譜,異質結處的PL明顯減弱,展示了光生載流子的輸運;

(b) WS2/ CsPbBr3的PL譜圖的mapping;

(c) CsPbBr3和WS2/ CsPbBr3的TRPL譜;

(d) WS2/ CsPbBr3的能帶結構;

(e-f) CsPbBr3 ,WS2和WS2/ CsPbBr3的拉曼光譜;

(g-h) 純WS2器件的結構示意圖和能帶圖;

(i-j) WS2/ CsPbBr3的器件結構圖和能帶圖,展示出耗盡區的形成。

3 器件性能

(a) 兩種器件的I-V曲線;

(b-e) 器件的光電流密度和開關比的數據統計,其中d圖給出了光電流密度統計中所用每個數據的具體數值及其分布,而e圖是開關比統計中所用每個數據的具體數值及其分布;

(f) 不同光強下的I-V曲線;

(g) 不同光強下的光電流;

(h) 不同光強下的響應度和EQE曲線;

(i) 不同光強下的開關比和比探測率;

(j) 瞬態響應曲線;

(k) 器件的響應時間。

 

4 壓電光電效應引起的WS2/CsPbBr3-vdWS器件的應變門控特性

(a) 相同光強,不同應變力下的I-V曲線;

(b-c) 不同應變力下對應的光電流和響應度。光電流隨應變的變化而發生明顯的變化,因而為探測器件或者芯片自身所受到的應變提供了潛在的應用價值;

(d) 所測試的異質結的光學顯微圖片,標尺為10微米;

(e) CsPbBr3納米線的HR-TEM圖;

(f-g) 器件壓縮應變示意圖及其對應的能帶圖,圖中紅色和藍色分別代表正電勢和負電勢;

(h-j) 器件拉伸應變示意圖及其對應的能帶圖。

【小結】

研究者設計了一種新型的WS2/ CsPbBr3-vdWH光電探測器,它具有高性能、低能耗、多功能集成等特點。器件開關比高達109.83,響應度和探測率分別達到57.2 A/W和1.36×1014瓊斯。此外,研究者還基于柔性襯底制備了可通過壓電光電子學效應調制并且能夠探測器件本身所受應變的多功能集成的光電探測器。

文獻鏈接:WS2/CsPbBr3 van der Waals heterostructure planar photodetectors with ultrahigh on/off ratio and piezo-phototronic effect-induced strain-gated characteristics. 2019, Nano Energy, DOI: 10.1016/j.nanoen.2019.104001.

附注:

作者信息:

通訊作者: 潘曹峰

第一作者: 徐遷

第一通訊單位: 北京納米能源與系統研究所

?

課題組簡介:

潘曹峰,研究員,博士生導師,先后入選國家特聘專家青年項目、自然基金委“優秀青年基金”,北京市海聚工程及特聘專家。

2005、2010年分別在清華大學材料科學與工程系獲學士、博士學位,2011與2012年先后獲得北京市優秀博士學位論文獎以及全國優秀博士學位論文獎。其后于美國佐治亞理工學院材料科學與工程學院進行博士后研究。主要從事低維壓電半導體光電器件的壓電(光)電子學效應(壓電半導體中的力光電耦合效應)及微納光電功能器件研究。在Nat. Photon.Chem. Rev. Nat. Comm.Adv. Mater.Adv. Energy Mater.Angew. Chem. Int. Edit.Nano EnergyACS Nano 等期刊上發表SCI論文160余篇,引用6700多次。現任Science Bulletin期刊材料學副主編與Nanotechnology的光電section editor。

 

研究領域:

壓電電子學與壓電光電子學實驗室主要從事低維壓電半導體微納光電功能器件中的力光電耦合效應(壓電電子學效應)及相關應用研究。以構建高性能微納光電功能器件為目標,以低維壓電半導體為載體,從材料的設計和可控制備出發,探索壓電(光)電子學效應對壓電半導體光電器件性能的調制機制,研究了從單根納米線原型器件到由大規模納米線陣列構成的集成器件,在超高分辨率應力傳感及成像、高性能傳感器陣列等研究方面取得了重要進展。

? ?目前,實驗室主要開展以下三方面研究:

  1. 三代半導體納米器件中的壓電(光)電子學效應
  2. 新型微納光電器件
  3. 觸感電子學與智能機器人

 

課題組近兩年在該領域發表的主要論文匯總:

  1. Piezotronics and piezo-phototronics of third generation semiconductor nanowires, Chemical Reviews, 2019, 119, 9303.
  2. Piezo-Phototronic Effect Enhanced Efficient Flexible Perovskite Solar Cells, ACS Nano, 2019, 134, 4507.
  3. Controllable Growth of Aligned Monocrystalline CsPbBr3 Microwire Arrays for Piezoelectric-induced Dynamic Modulation of Single-Mode-Lasing, Advanced Materials, 2019, 31, 1900647.
  4. Dynamically Modulated GaN Whispering Gallery Lasing Mode for Strain Sensor, Advanced Functional Materials, 2019,
  5. Controlled fabrication, lasing behavior and excitonic recombination dynamics in single crystal CH3NH3PbBr3 perovskite cuboids, Science Bulletin, 2019, 64, 698.
  6. Achieving High-resolution Pressure Mapping via Flexible GaN/ZnO Nanowire LEDs Array by Piezo-phototronic Effect, Nano Energy, 2019, 58, 633.
  7. Piezophotonic Effect Based on Mechanoluminescent Materials for Advanced Flexible Optoelectronic Applications”, Nano Energy, NGPT special issue, 2019, 55, 389.
  8. Unveiling the interlayer electron transport and its influence on the whole electric properties of black phosphorus, Science Bulletin, 2019, 64, 254.
  9. Dynamic Regulating of Single-Mode-Lasingin ZnO Microcavity by Piezoelectric Effect, Materials Today, 2018, 24, 33.
  10. Flexible Photodetector Arrays Based on Patterned CH3NH3PbI3-xClx Perovskite Film for Real-time Photosensing and Imaging, Advanced Materials, 2018, 30, 1805913.
  11. Recent progress in flexible pressure sensors arrays: from design to applications, Journal of Materials Chemistry C, 2018, 6, 11878.
  12. ZnO nanowire based CIGS solar cell and its efficiency enhancement by the piezo-phototronic effect, Nano Energy, 2018, 49, 508.
  13. In2O3 Nanowires Field-Effect Transistors with Sub-60 mV/dec Subthreshold Swing Stemming from Negative Capacitance and their Logic Applications, ACS Nano, 2018, 12, 9608.
  14. Progress in piezotronic and piezo-phototronic effect of two-dimensional materials, 2D Mater, 2018, 5, 042003.
  15. Large and Ultra-Stable All-Inorganic CsPbBr3 Monocrystalline Films: Low-Temperature Growth and Application for High-Performance Photodetectors, Advanced Materials, 2018, 30, 1802110.
  16. Piezotronic Effect Tuning on ZnO Microwire WGM Lasing Mode, ACS Nano, 2018, 12, 11899.
  17. Piezophototronic effect enhanced photoresponse of the flexible CIGS heterojunction photodetectors, Advnced Functional Materials, 2018, 28, 1707311.
  18. Piezo-phototronic Effect Modulated Deep UV Photodetector Based on ZnO-Ga2O3 Heterojuction Microwire, Advanced Function Materials, 2018, 28, 1706379.

 

課題組相關領域論文推薦:

壓電(光)電子學:

  1. High-resolution electroluminescent imaging of pressure distribution using a piezoelectric nanowire LED array, Nature Photonics, 2013, 7, 752-758
  2. Enhanced Emission Intensity of Vertical Aligned Flexible ZnO Nanowire/p-Polymer Hybridized LED Array by Piezo-phototronic Effect, Nano Energy, 2015, 14, 364-371.
  3. Enhancing Light Emission of ZnO-Nanofilm/Si-Micropillar Heterostructure Arrays by Piezo-Phototronic Effect, Mater. 2015, 27, 4447.
  4. Piezo-phototronic enhanced UV sensing based on a nanowire photodetector array, Mater. 2015, 27, 7963
  5. Enhancing Photoresponsivity of Self-Aligned MoS2 Field-Effect Transistor by Piezo-Phototronic Effect from GaN Nanowire, ACS Nano, 2016, 10, 7451.
  6. Enhanced performances of flexible ZnO/perovskite solar cells by piezo-phototronics effect, Nano Energy, 2016, 23, 27.
  7. Flexible LED Arrays Made of Transferred Si-Microwires-ZnO-Nanofilm with Piezo-Phototronic Effect Enhanced Lighting, ACS Nano, 2017, 11, 3883.
  8. Piezo-phototronic Effect Modulated Deep UV Photodetector Based on ZnO-Ga2O3 Heterojuction Microwire, Advanced Function Materials, 2018, 28, 1706379.
  9. Achieving High-resolution Pressure Mapping via Flexible GaN/ZnO Nanowire LEDs Array by Piezo-phototronic Effect, Nano Energy, 2019, 58, 633.

新型微納器件:

  1. MoS2 Negative Capacitance Field Effect Transistors with Subthreshold Swing below the Physics Limit, Advanced Materials, 2018, 30, 1800932.
  2. In2O3 Nanowires Field-Effect Transistors with Sub-60 mV/dec Subthreshold Swing Stemming from Negative Capacitance and their Logic Applications, ACS Nano, 2018, 12, 9608.
  3. Piezotronic Effect Tuning on ZnO Microwire WGM Lasing Mode, ACS Nano, 2018, 12, 11899.
  4. Tunable tribotronic dualgate logic device based on MoS2 and black phosphorus transistors, Advanced Materials, 2018, 30, 1705088.
  5. Flexible Photodetector Arrays Based on Patterned CH3NH3PbI3-xClx Perovskite Film for Real-time Photosensing and Imaging, Advanced Materials, 2018, 30, 1805913.
  6. Dynamic Regulating of Single-Mode-Lasingin ZnO Microcavity by Piezoelectric Effect, Materials Today, 2018, 24, 33.

傳感與觸感電子學:

  1. Dynamic Triboelectrification-Induced Electroluminescence and its Use in Visualized Sensing, Mater. 2016, 28, 6656.
  2. Self-powered High-resolution and Pressure-sensitive Triboelectric Sensor Matrix for Real-time Tactile Mapping, Mater., 2016, 28, 2896.
  3. Full Dynamic-Range Pressure Sensor Matrix Based on Optical and Electrical Dual-Mode Sensing, Mater., 2017, 29, 1605817.
  4. Detection of Non-joint Areas Tiny Strain and Anti-Interference Voice Recognition by Micro-cracked Metal Thin Film, Nano Energy, 2017, 34, 578.
  5. Highly Stretchable Transparent Selfpowered Triboelectric Tactile Sensor with Metallized Nanofibers for Wearable Electronics, Advanced Materials, 2018, 30.
  6. Skin inspired Highly Stretchable and Conformable Matrix Networks for Multifunctional Sensing, Nature Communications, 2018, 9, 244.
分享到