最新Chem. Rev.頂刊綜述:光聚合生物材料和基于光的3D打印策略在生物醫學中的應用


【引言】

?自從增材制造(通常稱為3D打印)技術問世以來,這項技術徹底改變了生物制造領域,并推動了組織工程和再生醫學領域的許多關鍵性進展。具體來說,與傳統的2D技術相比,現在已經有了較多的文獻證明,剛性單層培養系統不能很好地復原天然環境中固有的復雜性,因此,在這種2D條件下生長的細胞很難反映體內功能、表現型、形態和分化潛能,從而受到這種稱之為細胞外基質(ECM)的高度影響。因此,3D細胞培養系統在組織工程和再生醫學領域獲得了廣泛的吸引力。同時為了正確地模擬3D ECM環境,需要一種能夠精確控制材料在3D空間中的力學、物理和粘彈性性能的制造方法。從最新的3D打印技術進展表明,它們有望滿足這些要求。3D打印機所提供的控制水平已使得在生產與生理相關的仿生組織和器官替代品方面取得許多顯著進展,如藥物測試,闡明生物機制,疾病模型,翻譯醫學和外科植入物等。事實上,自Charles Hull博士首次將立體平版印刷(SLA)引入世界之后,許多3D打印技術也在短時間內被開發出來。然而,相應的3D打印材料并沒有被發展起來,這也是一段時間以來制約該領域發展的瓶頸。在最近的十年里,研究者才逐漸認識得到發展3D打印材料的重要性,從而最大化挖掘3D打印技術真正的潛力。

近日,美國加州大學圣地亞哥分校(UCSD)納米工程系陳紹琛教授(Shaochen Chen)(通訊作者)回顧了適合于光基3D打印技術的生物材料的發展,及其重點在生物打印方面的應用。首先,作者介紹了光固化生物材料中光聚合反應的基本原理和機理,總結了常用的光抑制和光不穩定的化學物質來控制聚合動力學。隨后,討論了目前用于光基3D打印的光聚合天然、合成和復合生物材料的文獻,以及它們在組織工程和再生醫學的應用。最后,作者回顧了最近從串行到平面再到體積構建的光基3D打印技術的進展和演變,并討論了提高打印分辨率和質量控制的策略,以標準化未來的打印優化方法。總體而言,擴大和發展新型光固化生物材料將有助于促進和擴大光基3D打印技術的用途。相關研究成果以“Photopolymerizable Biomaterials and Light-Based 3D Printing Strategies for Biomedical Applications”為題發表在Chem. Rev.上。

【圖文導讀】

圖一、光基3D打印技術在組織工程和再生醫學應用中的生物材料選擇標準概述

圖二、自由基引發硫醇?烯化學反應

圖三、烯烴基團選擇對硫醇?烯反應動力學的影響(A)硫醇?烯反應動力學的理論計算取決于所選擇的烯烴基團的反應性;

(B)基于理論動力學模型的烯烴基團反應性遞降。

圖四、取決于不同交聯機理和由此產生的不均勻程度的水凝膠網絡(A)單體和交聯劑的自由基鏈生長聚合導致網絡結構中的空間不均勻性;

(B)聚合物鏈的官能團在半靜態溶液中通過交聯形成網絡,導致局部不均勻

(C)聚合形成一個基本有序、均勻的網絡。

五、鄰硝基芐基(R1=H)和硝基苯基(R1=甲基)的光解機理六、生物材料的3D打印技術(A)使用GelMA打印的懸臂式心臟組織的示意圖和圖像;

(B)使用GelMA和GM-HA生物模擬打印的多細胞肝組織用于藥物試驗的熒光和亮場圖像;

(C)使用組織特異性dECM生物墨水模擬心臟和肝臟組織的設計和圖像;

(D)使用dECM生物墨水打印的肝癌模型熒光及圖像。

圖七、用于細胞生物學的各種3D打印PEG基水凝膠結構(A)3D打印的PEGDA圖像;

(B) 三種PEGDA模式的細胞排列和肌形成;

(C)3D印制中各種形狀的微孔,用于多細胞球體和胚狀體培養;

(D)研究細胞組織行為的自然激發分形模式;

(E)具有微尺度單位和正負泊松比的3D打印網絡結構

圖八、用于組織工程和再生醫學的各種3D打印PEG基水凝膠結構(A)3D打印仿生脊髓支架;

(B)基于人體脊髓損傷MRI的3D打印脊髓支架;

(C)各種用于周圍神經再生的3D打印神經引導導管;

(D)人面部大小NGC的3D打印。

九、3D打印的NOr-PGS

將Nor-PGS3D打印為(A)立方體,(B)鼻子形和(C)耳朵形結構

十、聚氨酯的聚合機理(A)多元醇/多胺和擴鏈劑與過量二異氰酸酯之間的一級聚合;

(B)多元醇/多胺與二異氰酸酯之間的兩級聚合。

十一、大規模聚氨酯生產中常用的二異氰酸酯

十二、聚氨酯生產中常用的低聚物

熱塑性聚氨酯和熱固性聚氨酯聚合物鏈結構差異的示意圖

在PU中硬、軟段分布

五、可用于形成納米復合水凝膠的不同類型納米材料的示意圖六、CNT/GelMA的3D打印(A)CNT/GelMA預聚物溶液的光學圖像;

(B)0.5 mg/mL CNT/GelMA預聚物溶液的高分辨率TEM圖像;

(C)預聚物溶液的UV?vis吸附光譜;

(D)CNT/GelMA水凝膠的熒光圖像。

微形魚圖像的3D打印(A)定位于頭部、尾部和身體的3D微魚的不同納米粒子的能量色散X射線;

(B)3D打印的蜂膠溶液微魚的熒光圖像;

(C)微魚在磁力引導下不同時間的圖像。

羥磷灰石(HA)的3D打印(A)GelMA網絡中羥磷灰石(HA)形成機理的示意圖;

(B)打印裝置原理圖;

(C)3D打印樣品的表征;

(D)結構中細胞的共焦圖像;

(E)若丹明(紅色)灌注管的熒光圖像

(F)3D打印皮質骨示意圖。

九、3D打印肝臟解毒裝置(A) 聚二乙炔納米粒子包裹在PEGDA中的3D肝臟驅動解毒裝置的熒光圖像;

(B)這種解毒裝置的SEM圖像;

(C)肝臟驅動的解毒裝置顯示更高的中和效率。

圖二十基于光的3D打印模式的分類(A)以逐點或逐行方式連續沉積的生物材料;

(B)基于數字光處理(DLP)的平面構建模式投影到生物材料;

(C)基于DLP的模式投影的體積構建投影到生物材料。

【小結】

總之,多年來3D打印技術已迅速發展成為在制造生物醫學應用的高度復雜結構的先進系統。這種新型的制造方法已經用于開發新型骨架、組織和器官替代品以及醫學植入物,從而實現在傳統生物制造中無法實現的研究方法。同時本文中還強調了光基3D打印機技術在發展過程中的重要作用,即基于光的3D打印技術可以分為從串行到平面到體積構建的分層打印模式,同時將重點放置于后兩種模式上,其通過DLP的技術實現,這主要是由于其優越的微米級分辨率、 以秒到分鐘的順序快速制造速度和可擴展性。此外,識別和理解每個參數的影響對于改進的下一代3D打印技術的設計和工程是非常有價值的。

文獻鏈接:“Photopolymerizable Biomaterials and Light-Based 3D Printing Strategies for Biomedical Applications”(Chem. Rev.,2020,DOI: 10.1021/acs.chemrev.9b00810)

本文由CYM編譯供稿。

作者簡介

Shaochen Chen, PhD

Professor and Chair of NanoEngineering?Department

University of California, San Diego

Research:?Dr. Chen is a pioneer in 3D printing and bioprinting with over 200 peer-reviewed publications. He first initiated a scanningless 3D printing technique termed "micro-stereolithography (μSL)" for projection printing of biomaterials in 2006. ?Building upon his μSL technique, he invented a dynamic optical stereolithography method (DOPsL) in 2012 (Advanced Materials, 2012). Compared to traditional nozzle-based 3D printing, DOPsL enables 3D printing that is 3,000 times faster in printing speed and 100 times finer in printing resolution (Nature Communications, 2014). He has continued to advance this field by developing a microscale continuous optical bioprinting (μCOB) method for the rapid 3D bioprinting of functional tissues models in mere seconds. Using human induced pluripotent stem cells, he successfully bioprinted functional liver tissues that enable disease modeling and drug screening (PNAS, 2016). Furthermore, by integrating neuron stem cells within a 3D printed biomimetic scaffold, his team has succeeded in the repair of a severely damaged spinal cord in rats to result in significant functional recovery (Nature Medicine, 2019). His ground-breaking work has been reported by The Washington Post, The Wall Street Journal, Forbes, and Yahoo News.

His pioneering work in micro and nanoscale 3D printing and bioprinting established the foundation for the emerging field of biofabrication for tissue engineering and regenerative medicine applications. He founded a startup company, Allegro 3D to commercialize his bioprinting techniques. It is providing transformative solutions to organ/tissue repair and regeneration, accelerating drug toxicity and efficacy testing, and advancing human diseases modeling.

Dr. Chen has received numerous awards, including the NSF CAREER award,?ONR Young Investigator award, and NIH Edward Nagy New Investigator Award. In 2017, he received the Milton C. Shaw Manufacturing Research Medal from ASME for his seminal work in 3D printing, bioprinting, and nanomanufacturing. This is the highest award given by ASME to recognize original manufacturing research in the field. Dr. Chen is a Fellow of major societies, including the American Association for the Advancement of Science (AAAS), American Institute for Medical and Biological Engineering?(AIMBE), American Society of Mechanical Engineers (ASME), International Society for Optics and Photonics?(SPIE), and International Society for Nanomanufacturing (ISNM).

Representative Publications ?(out of 203 peer-reviewed papers)

  1. Lu and S. C. Chen*, “Micro and Nano-fabrication of Biodegradable Polymers for Drug Delivery”, Advanced Drug Delivery Reviews, Vol. 56, pp. 1621-1633, 2004.
  2. Lu, G. Mapili, G. Suhali, S. C. Chen*, K. Roy*, “A Digital Micro-mirror Device-based System for the Microfabrication of Complex, Spatially Patterned Tissue Engineering Scaffolds”, Journal of Biomedical Materials Research A, Vol. 77A (2), pp 396-405, 2006.
  3. P. ?Zhang,X. Qu,?P. Soman,?K. C. Hribar,?J. W. Lee,?S. C. Chen*, and S. He, “Rapid Fabrication of Complex 3D Extracellular Microenvironments?by Dynamic Optical Projection Stereolithography”, Advanced Materials, Vol. 24 (no. 31), pp. 4266-4270, 2012.
  4. Zhu, J. Li, Y. Leong,?I. Rozen, X. Qu, R. Dong, Z. Wu, W. Gao, P. H. Chung, J. Wang*,?and S. C. Chen*,“3D Printed Artificial Micro-Fish”, Advanced Materials, 27, pp. 4411–4417, 2015.
  5. Ma, X. Qu, W. Zhu, Y.-S. Li, S. Yuan, H. Zhang, J. Liu, P. Wang, C. S. Lai, F. Zanella, G.-S. Feng, F. Sheikh, S. Chien*, S. C. Chen*, “Deterministically Patterned Biomimetic Human iPSC-derived Hepatic Model via Rapid 3D Bioprinting”, Proceedings of the National Academy of Sciences (PNAS), Vol. 113 (no. 8), pp. 2206-2211, 2016.

? ? ? ? ?Highlighted in Nature Reviews Gastroenterology & Hepatology, Feb 24, 2016.

  1. Zhu, X. Qu, J. Zhu, X. Ma, S. Patel, J. Liu, P. Wang, C. S. Lai, M. Gou, Y. Xu, K. Zhang, S. C. Chen*, “Direct 3D bioprinting of prevascularized tissue constructs with complex microarchitecture”, Biomaterials, Vol. 124, pp. 106-115, 2017.
  2. Zhu+, K. R. Tringale+, S. A. Woller, S. You, S. Johnson, H. Shen, J. Schimelman, M. Whitney, J. Steinauer, W. Xu, T. L. Yaksh, Q. T. Nguyen*, S. C. Chen*, “Rapid Continuous 3D Printing of Customizable Peripheral Nerve Guidance Conduits”, Materials Today, Vol. 21 (9), pp. 951-959, 2018.
  3. Ma, C. Yu, P. Wang, W. Xu, X. Wan, C. S. E. Lai, J. Liu, A. Koroleva-Maharajh, S. C. Chen*, “Rapid 3D bioprinting of decellularized extracellular matrix with regionally varied mechanical properties and biomimetic microarchitecture”, Biomaterials,Vol. 185, pp. 310-321, 2018, DOI: 10.1016/j.biomaterials.2018.09.026
  4. Koffler+, W. Zhu+, X. Qu, O. Platoshyn, J. Dulin, J. Brock, L. Graham, P. Lu, J. Sakamoto, M. Marsala, S.C. Chen*, M. H. Tuszynski*, “Biomimetic 3D-Printed Scaffolds for Spinal Cord Injury”, Nature Medicine, Vol. 25, pp. 263-269, 2019.

? ? ? ? ?Highlighted in Nature Reviews Neuroscience, Jan. 29, 2019, reported by NIH Director’s Blog?on? ? ? ? ? June 6, 2019.

  1. Tang, Q. Xie*, R. C. Gimple, Z. Zhong, T. Tam, J. Tian, R. L. Kidwell, ?Q. Wu, B. C. Prager, Z. Qiu, A. Yu, Z. Zhu, P. Mesci, H. Jing, J. Schimelman, P. Wang, D. Lee, M. H. Lorenzini, ?D. ?Dixit, L. Zhao, S. Bhargava, T. E. Miller, X. Wan, J. Tang, B. Sun, B. F. Cravatt, A. R. Muotri, S.C. Chen*, J. N. Rich*, “Three-dimensional bioprinting enables creation of tissue-informed glioblastoma microenvironments for modeling complex cellular interactions”, Cell Research, in press, 2020
  2. Wangpraseurt*, S. You, F. Azam, G. Jacucci, O. Gaidarenko, M. Hildebrand, M. Kühl, A. G. Smith, M.P. Davey, A. Smith, D. D. Deheyn, S. C. Chen*, S. Vignolini*,“3D Printed Bionic Corals”, Nature Communications, Vol. 11, 1748 (1-8), 2020.
分享到