JACS: 高負載銥顯著增強氧化鎳基析氧反應


【引言】

水分解是一項極具前景的技術,傳統的四電子析氧反應(OER)存在動力學緩慢,能量損失大等問題,即使是目前最先進的高成本的貴金屬催化劑(如氧化銥和氧化釕)仍然存在這個問題,這直接阻礙了該技術的大規模應用。因此,研究者致力于開發低成本高效益的OER催化劑替代現有的商業催化劑。單原子催化劑(SACs)因其在電化學反應中具有活性中心均勻性好、產物選擇性高、載體種類多、原子利用率高、貴金屬用量少等優點而受到廣泛關注。

然而,由于金屬原子與載體之間的弱相互作用,制備SACs一直面臨著單個原子在載體上負載低的挑戰。為了解決這個問題,大多數研究集中在修飾載體材料上,如引入缺陷、空位和摻雜原子,以增強載體與金屬原子之間的相互作用。然而,通過這些方法產生的缺陷位點數量有限,這導致單原子的負載量仍然太低,催化活性不足,無法商業應用。SACs的實際應用受到有限活性位點的限制,而活性位點數量是目前SACs的主要屏障。因此,提高催化劑的負載量迫切需要更有效的策略。

除活性中心外,單原子的本征活性是決定催化性能的另一個方面。催化劑原子與載體之間的相互作用對催化劑的穩定性和活性有著重要的影響。載體不但提供了催化反應發生的平臺,同時也決定了局部原子結構和電子結構。在這方面,為了最大限度地提高金屬原子的催化活性,將單個原子錨定在載體上的穩定位置對SACs的合理設計至關重要。盡管迄今為止,在實驗和理論上都取得了令人鼓舞的進展,但對于實現錨定在明確位置上的單原子高覆蓋率的研究仍然不足,需要進一步探索。

【研究進展】

近日,南方科技大學谷猛教授和徐虎教授聯合俄勒岡州立大學的Zhenxing Feng教授在JACS上報道了一項高效析氧反應的工作,文章題目為” Ultrahigh-loading of Ir single atoms on NiO matrix to dramatically enhance oxygen evolution reaction”。 作者開發了一種簡便的方法來合成單一的銥原子催化劑(稱為Ir-NiO),其在氧化鎳(NiO)基體上的銥原子負載量達到了前所未有的18wt%。像差校正掃描透射電子顯微鏡(STEM)和同步輻射X射線吸收光譜(XAS)表明,單個銥原子均勻地分布在NiO的最外層表面。密度泛函理論計算表明,被取代的單原子是OER的活性中心,同時由于銥原子引入的過量電子激活了NiO的近表面反應性,從而顯著提高了NiO的OER性能。由于單個銥單原子的高負載量和獨特的電子結構,Ir-NiO在260 mV的過電位下表現出優越的OER活性,電流密度超過了IrO2 46倍以上。

【圖文簡介】

圖1 材料表征

a-b)具有代表性的低(a)和高(b)放大率的NiO樣品的SEM圖像;

c) NiO和Ir-NiO的XRD圖譜;

d) Ir-NiO的EDS譜;

e, g) 代表性的低倍和(g)高倍HAADF-STEM圖像顯示了高密度的銥單原子;

f) Ir-NiO的STEM-EDS元素圖;

h-i)(h)Ir M-edge和(i)O K-edge和Ni L-edge的EELScore-loss信號。

圖2 元素表征

a) 具有代表性的紅外NiO催化劑HAADF-STEM顯微照片,其中的亮點歸因于銥單原子。b-c)相應的原子模型。

d-k)沿(d,e,h)[111]區域軸和(i-k)[211]區域軸的原子圖像;

l) 這些線表示在(h-i)中標記的HAADF強度分析的線輪廓;

f-g)[111]和[211]區域軸的原子模型。(所有圖中比例尺均為1nm)

圖3 Ir-NiO、IrO2和NiO的XPS和XAS表征

a) IrO2和Ir NiOIr 4f區的曲線解析XPS;

b) NiO和Ir-NiO的Ni 2p區的曲線分辨XPS;

c)Ir-NiO、Ir箔和IrO2的Ir-L3 X射線近邊分析數據;

d) NiO,NiO和NiOOH的Ni K邊XANES數據;

e-f)Ir-NiO催化劑(e)Ir L邊和(f)Ni K邊的傅里葉變換EXAFS光譜及其參考數據。

圖4 催化性能表征

a-b) Ir-NiO、NiO和IrO2催化劑在1M KOH中的LSV極化曲線和OER的(b)Tafel圖;

c) 不同催化劑在電流密度為10 mA cm-2時的過電位,插圖是電流密度為1.48 V和1.49 V時與RHE時的比較;

d) 通過繪制0.75 V/RHE時的電流密度變化與掃描速度的對比來估計Cdl,以擬合線性回歸;e) 在j=10 mA cm-2下進行10 h的長期耐久性試驗。

圖5 理論計算

a)理想NiO(001)和單Ir原子摻雜NiO(001)(Ir-NiO(001))上1.23 V/RHE勢下OER的自由能;

b)Ir-NiO(001)表面二維電勢場的DFT計算;

c)*OH從Ni原子向Ir原子擴散的能量分布。

【小結】

??該研究實現了錨定在NiO基體上的Ir單原子的超高負載,極大地改善了水的分裂性能。結果表明,負載的Ir原子位于NiO最外表面的Ni位,即使在10小時后仍保持單原子狀態。Ir單原子在NiO表面的超高負載量不僅提高了催化劑的催化活性,而且有助于保持樣品在長循環后的結構完整性。獨特的原子結構使Ir的氧化態接近4+。DFT計算表明,取代的Ir原子是OER的活性中心,同時也提高了周圍Ni原子的活性,從而顯著提高了NiO的OER性能。催化位點的增加和單原子與載體之間的協同作用是提高SACs內在活性的重要原因,為SACs的進一步合成和設計提供了理論依據。

文獻鏈接:Ultrahigh-loading of Ir single atoms on NiO matrix to dramatically enhance oxygen evolution reaction, JACS, 2020, DOI: 10.1021/jacs.9b12642.

谷猛團隊介紹:

納米能源實驗室成立于2017年,現有團隊成員22人。團隊帶頭人谷猛博士目前為南方科技大學材料科學與工程系副教授,主要從事能源材料科學研究,研究領域包括基于原位透射電鏡研究電池、高性能全固態電池的合成和機理分析、原位透射電鏡研究催化劑等幾個方面。

工作匯總: ?

谷猛研究員2015年獲得美國電鏡協會頒發的Albert CREWE Award,2017年入選千人計劃,2018年入選孔雀計劃B類與深圳領航人才,2019年獲得深圳市青年科技獎。獲得了青年千人計劃300萬經費,孔雀計劃500萬經費,國家自然科學基金青年項目,中廣核研究項目,以骨干成員身份參與深圳市工程重點實驗室項目,深圳清潔能源研究院,廣東省電驅動力能源材料重點實驗室,粵港澳光熱電能源材料與器件聯合實驗室等。取得多項國際同行高度認可的標志性科研成果。團隊文章多發表在Nature Catalysis, Nature Communications,Nano Letters,ACS Nano,Advanced Materials,angewandte chemie international edition,Physical Review Letters,Nano Energy等知名雜志,Google Scholar引用7600次,其中ESI他引統計共4730次,ESI高被引論文共9篇,ESI他引超過100次的有17篇。其中第一、通訊作者且影響因子大于10的文章有21篇。

研究成果:1.圍繞催化劑的應用基礎研究,基于工業生產對新型高性能清潔催化劑的迫切需求,從材料-性能-機理-應用進行貫通式研發,實現大批量低成本實用催化劑的研發、完善和升級。目前已申請專利八項,其中美國專利1項。綠色催化劑的產業化制備與性能研究正在穩步進行。2.采用全新的固態電解質取代當前有機電解液和隔膜來制備固態電池,具有高安全性、高體積能量密度,同時與不同新型高比能電極體系(如鋰硫體系、金屬-空氣體系等)進行適配研究,可進一步提升質量能量密度,并配套南科大先進的球差電鏡對其進行表征與機理研究,并采用更簡單安全的方法來制備固態電解質,從而促進固態電池的產業化。

相關論文:

  1. Xiaoben Zhang#, Shaobo Han#, Beien Zhu, Guanghui Zhang, Xiaoyan Li, Yi Gao, Zhaoxuan Wu, Bing Yang, Yuefeng Liu, Walid Baaziz, Ovidiu Ersen, Meng Gu*,Jeffrey T. Miller and Wei Liu*, Reversible loss of core–shell structure for Ni–Au bimetallic nanoparticles during CO2 hydrogenation, Nature Catalysis, https://doi.org/10.1038/s41929-020-0440-2 (通訊作者文章)
  2. Qi Wang, Xiang Huang, Zhi Liang Zhao, Maoyu Wang, Bin Xiang, Jun Li, Zhenxing Feng*, Hu Xu*, Meng Gu*, Ultrahigh-Loading of Ir Single Atoms on NiO Matrix to Dramatically 2 Enhance Oxygen Evolution Reaction, Journal of the American Chemical Society, https://dx.doi.org/10.1021/jacs.9b12642(通訊作者文章)
  3. Shaobo Han, Guang-Jie Xia, Chao Cai, Qi Wang, Yang-Gang Wang*, Meng Gu* & Jun Li, Gas-assisted transformation of gold from fcc to the metastable 4H phase, Nature Communications volume 11, Article number: 552 (2020) (通訊作者文章)
  4. Shaobo Han, Chao Cai, Fei Yang, Yuanmin Zhu, Qian Sun, Yunguang Zhu, Hui Li, Haijiang Wang, Yang Shao-Horn*, Andy X. Sun*, Meng Gu*, ACS Nano, https://doi.org/10.1021/acsnano.0c00283 (通訊作者文章)
  5. Fast Zn2+ kinetics of vanadium oxide nanotubes in high-performance rechargeable zinc-ion batteries, Fei Yang, Yuanmin Zhu, Yu Xia, Shuhuai Xiang, Shaobo Han, Chao Cai, Qi Wang, Yian Wang, Meng Gu*, Journal of Power Sources, 2020, 451, 2020, 227767 (通訊作者文章)
  6. Single-Atom Ir-Anchored 3D Amorphous NiFe Nanowire@Nanosheets for Boosted Oxygen Evolution Reaction, Xin Luo, Xiaoqian Wei, Hong Zhong, Hengjia Wang, Yu Wu, Qi Wang, Wenling Gu, Meng Gu*, Scott P. Beckman, Chengzhou Zhu*, ACS Appl. Mater. Interfaces 2019, https://doi.org/10.1021/acsami.9b17476 (通訊作者文章)
  7. Shenghua Ye, Feiyan Luo, Qianling Zhang, Pingyu Zhang, Tingting Xu, Dongsheng He, Licheng Guo, Yu Zhang, Chuanxin He, Xiaoping Ouyang, Qi Wang, Meng Gu*, Jianhong Liu* and Xueliang Sun*,Highly stable single Pt atomic sites anchored on aniline-stacked graphene for the hydrogen evolution reaction,Energy & Environmental Science, 2019,12, 1000-1007 (影響因子33)(通訊作者文章)
  8. Chao Cai, Shaobo Han, Qi Wang, Meng Gu*, Direct Observation of Yolk–Shell Transforming to Gold Single Atoms and Clusters with Superior Oxygen Evolution Reaction Efficiency, ACS Nano(IF=13.9), 2019, 13, 8, 8865-8871 (通訊作者文章)
  9. Zhu, Yuanmin; Yang, Fei; Guo, Mohan; Chen, Lang; Gu, Meng*, Real-Time Imaging of the Electrochemical Process in Na-O2 Nanobatteries Using Pt@CNT and Pt0.8Ir0.2@CNT Air Cathodes, ACS Nano(IF=13.9), 13, 14399-14407 (通訊作者文章)
  10. Qi Wang, Tianli Feng, Hu Xu, Sokrates Pantelides, Meng Gu*, Sub-3 nm Intermetallic ordered Pt3In Clusters for Oxygen Reduction Reaction, Advanced Science, 2019, 1901279 (通訊作者文章)
  11. Qi Wang, Zhi Liang Zhao, and Meng Gu*,CO Gas Induced Phase Separation in PtPb@Pt Catalyst and Formation of Ultrathin Pb Nanosheets Probed by In Situ Transmission Electron Microscopy, Small, 2019, 1903122 (通訊作者文章)
  12. Zhu, Jiakun; Shen, Huahai; Shi, Xiaobo; Yang, Fei; Hu, Xiangsheng; Zhou, Weidong; Yang, Hui; Gu, Meng*, Revealing the Chemical and Structural Evolution of V2O5 Nanoribbons in Lithium-Ion Battery Using In-Situ Transmission Electron Microscopy Analytical Chemistry, 2019, 91, 17, 11055-11062 (通訊作者文章)
  13. Jing Li, Shaobo Han, Junwei Zhang, Junxiang Xiang, Xingqun Zhu, Ping Liu, Xuefeng Li, Chao Feng, Bin Xiang*, Meng Gu*,Synthesis of three-dimensional free-standing WSe2/C hybrid nanofibers as anodes for high-capacity lithium/sodium ion batteries, Journal of Materials Chemistry A, 2019,7, 19898-19908 (通訊作者文章)
  14. Yu Xia, Jianming Zheng, Chongmin Wang, Meng Gu*, Designing principle for Ni-rich cathode materials with high energy density for practical applications, Nano Energy, 49, 2018, 434-452(影響因子5) (通訊作者文章)
  15. Qi Wang, Zhi Liang Zhao, Sha Dong, Dongsheng He, Paramaconi Rodriguez, Bin Xiang, Zhiguo Wang, Yongye Liang*, Meng Gu*, Design of active Nickel single-atom decorated MoS2 as a pH-universal catalyst for hydrogen evolution reaction,Nano Energy, Volume 53, 2018, Pages 458-467(影響因子5)(通訊作者文章)
  16. Yang Wang, Maoyu Wang, Zisheng Zhang, Qi Wang, Zhan Jiang, Marcos Lucero, Xing Zhang, Xiaoxiao Li, Meng Gu,* Zhenxing Feng,* and Yongye Liang*, Phthalocyanine Precursors To Construct Atomically Dispersed Iron Electrocatalysts, ACS Catal. 2019, 9, 6252?6261 (影響因子4)(通訊作者文章)
  17. Qi Wang, Zhiliang Zhao, Chao Cai, Hui Li, Meng Gu*, Ultra-stable 4H-gold nanowires at up to 8000C in vacuum, Journal of Materials Chemistry A, 2019, 7, 23812-23817 (影響因子7)(通訊作者文章)
  18. Composition-Dependent CO2 Electrochemical Reduction Activity and Selectivity on Au-Pd Core-Shell Nanoparticles, Shangqian Zhu, Qi Wang, Fei Xiao, Minhua Shao, Meng Gu*, Journal of Materials Chemistry A, 2019,7, 16954-16961 (通訊作者文章)
  19. R Zhong, Z Zhang, H Yi, L Zeng, C Tang, L Huang*, M Gu*, Covalently bonded 2D/2D O-g-C3N4/TiO2 heterojunction for enhanced visible-light photocatalytic hydrogen evolution, Applied Catalysis B: Environmental, 2018,237, 1130-1138 (影響因子2) (通訊作者文章)
  20. Yu Xia,Shaobo Han,Yuanming Zhu,Yongye Liang, Meng Gu*,Stable cycling of mesoporous Sn4P3/SnO2@C nanosphere anode with high initial coulombic efficiency for Li-ion batteries, Energy Storage Materials, 2019, 18, 125-132 (citescore:15)(通訊作者文章)
  21. Han, Shaobo; Wang, Jing; Shi, Xiaobo; Guo, Mohan; Wang, Hong; Wang, Chongmin; Gu, Meng*,Morphology-Controlled Discharge Profile and Reversible Cu Extrusion and Dissolution in Biomimetic CuS,ACS Applied Materials & Interfaces,2018, 10 (48), 41458–41464 (影響因子5)(通訊作者文章)
  22. Xin Luo, Xiaoqian Wei,Hong Zhong, Hengjia Wang, Yu Wu, Qi Wang, Wenling Gu, Meng Gu*, Scott Beckman, Chengzhou Zhu*,Single-Atom Ir-Anchored 3D Amorphous NiFe Nanowire@Nanosheets for Boosted Oxygen Evolution Reaction, ACS Appl. Mater. Interfaces 2019, https://doi.org/10.1021/acsami.9b17476 (通訊作者文章)
  23. Shaobo Han, Tianwu Chen, Chao Cai, Dongsheng He, Sean Li, Xia Xiang, Xiaotao Zu, Sulin Zhang, Meng Gu*, Probing the Origin of Gold Dissolution and Tunneling Across Ni2P Shell Using in-situ Transmission Electron Microscopy, ACS Appl. Mater. Interfaces 2019, https://doi.org/10.1021/acsami.9b17531 (通訊作者文章)
  24. Ruyi Zhong, Zisheng Zhang, Shuqi Luo, Z. Conrad Zhang, Limin Huang* and Meng Gu*, Comparison of TiO2 and g-C3N4 2D/2D nanocomposites from three synthesis protocols for visible-light induced hydrogen evolution, Catalysis Science & Technology, Sci. Technol., 2019, 9, 75–85 Cover article???? (影響因子37)(通訊作者文章)
  25. Meng GU*, Z. Wang, C. Wang, J. Zheng, Atomic scale study of surface orientations and energies of Ti2O3 crystals, Applied Physics Letters, 2017 111, 181603 (影響因子5)
  26. Shaobo Han, Yuanmin Zhu, Chao Cai, Jiakun Zhu, wenbin han, Lang Chen, Xiaotao Zu*, HUI YANG*, and Meng Gu*, Failure mechanism of Au@Co9S8 yolk-shell anode in Li-ion batteries unveiled by in-situ transmission electron microscopy, Applied Physics Letters, 2019, 114, 113901 (影響因子5)(通訊作者文章)
  27. Shaobo Han, Chao Cai, Weinan Caiyang, Xia Xiang, Hongxiang Deng, Xiaotao Zu*, Matthew J. Lawrence, Kai Sun*, and Meng Gu*, Interface engineering to enhance the oxygen evolution reaction under light irradiation, Phys. Lett. 115, 103901 (2019) (通訊作者文章)
  28. Yuanmin Zhu, Chan Li, Qi Wang, Jianping Wang, Lang Chen, and Meng Gu*, Fast lithiation of NiO investigated by in situ transmission electron microscopy, Phys. Lett.115, 143902 (2019) (通訊作者文章)
  29. Cai, S. Han, W. Caiyang, R. Zhong, Y. Tang, M. J. Lawrence, Q. Wang, L. Huang,* Y. Liang, M. Gu*,Tracing the Origin of Visible Light Enhanced Oxygen Evolution Reaction, Adv. Mater. Interfaces 2018, 1801543 (影響因子4.27)(通訊作者文章)
  30. Han, W. Liu, C. Chao, P. Cao,* M. Gu*,Dumbbell to Core–Shell Structure Transformation of Ni–Au Nanoparticle Driven by External Stimuli,Part. Part. Syst. Charact. 2018, 1800426(通訊作者文章)
  31. Qingqing Cheng, Shaobo Han, Kun Mao, Chi Chen, Lijun Yang, Zhiqing Zou, Meng Gu*, Zheng Hu , Hui Yang*, Co Nanoparticle Embedded in Atomically-dispersed Co-N-C Nanofibers for Oxygen Reduction with High Activity and Remarkable Durability, Nano Energy, 2018, 52, 485-493 (影響因子5) (通訊作者文章)
  32. Guocai Yuan, Shaobo Han; Xiaobo Lei; Jizhen Hu; Weishu Liu; Qi Wang; Chen Chen; Qian Zhang; Qinyong Zhang*; Meng Gu*,The enhancement of thermoelectric performance of p-type Li doped Mg2Ge0.4Sn0.6 by Si addition,Scripta Materialia, 2019, 166, 122-127 (影響因子75)(通訊作者文章)
  33. Jiakun Zhu, Mohan Guo, Yuemei Liu, Xiaobo Shi, Feifei Fan, Meng Gu*,and Hui Yang*, In Situ TEM of Phosphorus-Dopant-Induced Nanopore Formation in Delithiated Silicon Nanowires, ACS Appl. Mater. Interfaces, 2019,11, 17313-17320(影響因子5)(通訊作者文章)
  34. Sun, Congli; Zhao, Kangning; He, Yang; Zheng, Jianming; Xu, Wangwang; Zhang, Chenyu; Wang, Xiang; Guo, Mohan; Mai, Liqiang; Wang, Chongmin; Gu, Meng* Interconnected Vertically-Stacked 2D-MoS2 for Ultrastable Cycling of Rechargeable Li-ion Battery,ACS Appl. Mater. Interfaces, 11, 20762-20769,2019 (影響因子5)(通訊作者文章)
  35. Jianhui Li, Shaobo Han, Chenyu Zhang, Wei Wei, Meng Gu*, Lingjie Meng*, High-Performance and Reactivation Characteristics of High-Quality Graphene Supported SnS2 Heterojunctions for Lithium-Ion Batteries Anode, ACS Appl. Mater. Interfaces, 2019, 11, 25, 22314-22322(通訊作者文章)
  36. Songhao Wu, Yidong Han, Kechun Wen, Zhaohuan Wei, Jie Xiong, Meng Gu*, Weidong He*, Composite nanofibers through in-situ reduction with abundant active sites as flexible and stable anode for lithium ion batteries, Composites Part B: Engineering, 2019, 161,369-375 (影響因子78)(通訊作者文章)
  37. Y Li, X Chen, M Zhang, Y Zhu, W Ren, Z Mei, M Gu*, F Pan*,Oxygen vacancy-rich MoO3-x nanobelts for photocatalytic N2 reduction to NH3 in pure water, Catalysis Science & Technology, 2019,9, 803-810 (通訊作者文章)
  38. Yubin Chen, Liangliang Zou, Hong Liu, Qi Wang, Meng Gu*, Hui Yang*, Fe and N Co-Doped Porous Carbon Nanospheres with High Density of Active Sites for Efficient CO2 Electroreduction, Phys. Chem. C, 2019, tps://doi.org/10.1021/acs.jpcc.9b02195 (影響因子4.5)(通訊作者文章)
  39. Ye Hu, Ruoou Yang, Hengquan Chen, Shaobo Han, Qinggang He, Zheng Jiang, Meng Gu*, One-pot approach to synthesize a highly active 3-dimensionalFe-Nx-CNTs/rGO catalyst based on the CNTs and rGO composite matrix for the oxygen reduction reaction, ChemElectroChem, 2019,6, 504-513(影響因子14)(通訊作者文章)
  40. Matthew J. Lawrence, Veronica Celorrio, Xiaobo Shi, Qi Wang, Alex Yanson, Nicholas J.E. Adkins, Meng Gu*, Joaquín Rodríguez-López, and Paramaconi Rodriguez, Electrochemical Synthesis of Nanostructured Metal-doped Titanates and Investigation of Their Activity as Oxygen Evolution Photoanodes, ACS Appl. Energy Mater., ACS Appl. Energy Mater., 2018, 1, pp 5233–5244 (通訊作者文章)
  41. Hao Sun , Guanzhou Zhu , Miss Xintong Xu , Meng Liao , Michael Angell , Meng Gu , Yuanmin Zhu , Huisheng Peng, Hongjie Dai, A safe and non-flammable sodium metal battery based on an ionic liquid electrolyte, Nature Communications, (2019) 10:3302? (影響因子4)
分享到