中南大學張寧教授課題組ACS Nano: 構建WN/WO3異質結構納米片優化NOx吸附與加氫能力,助力硝酸根電催化還原合成氨


第一作者:黃振聰 (碩士生)

通訊作者:張寧*,楊寶鵬 * (博士生)

通訊單位:中南大學材料科學與工程學院/物理與電子學院

研究背景

氨(NH3)是一種重要的化工原料,也是世界上產量最大的化學品之一。其不僅與現代農業和工業生產息息相關,同時也被認為是一種很有前途的氫能儲存介質和全球可再生能源的載體。目前傳統的氨合成方法主要依靠Haber?Bosch工藝,這一過程由于要在高溫高壓下實現,不僅能耗高,而且還會排放大量地溫室氣體。硝酸鹽(NO3?)是人類工業和農業廢水中的一種常見的污染物,其不僅會破壞水體生態平衡,嚴重時還會引起疾病威脅人類健康。從環保和能源的角度來看,將廢水中的硝酸鹽(NO3?)通過綠色電能的驅動以電化學的方式轉化為高附加值的產品NH3是一種一石二鳥的策略。因此,電化學硝酸根還原合成氨被認為是一種很有前途的綠色制氨的方法。然而,由于其低活性和選擇性,通過電化學NO3?還原反應(NO3RR)高效生產NH3仍然是一個重大挑戰。從動力學上來說,NO3?還原合成NH3涉及復雜的八電子轉移過程,根據目前的研究,氮氧化物(NOx)中間體(如*NO3和*NO2)的吸附以及隨后的加氫過程是NO3RR的關鍵一環。因此,在NO3RR過程中如何設計和調控NOx中間體的吸附和加速氫化過程對于開發高效NO3RR電催化劑至關重要。

文章簡介

近日,來自中南大學張寧教授團隊,在國際知名期刊ACS Nano上發表題為“Tungsten Nitride/Tungsten Oxide Nanosheets for Enhanced Oxynitride Intermediate Adsorption and Hydrogenation in Nitrate Electroreduction to Ammonia ”的研究論文。該論文設計了WN/WO3異質結構納米片來優化*NOx的吸附并促加氫,極大的促進了NO3-還原合成NH3的過程。理論計算表明,將WN局部引入WO3將縮短相鄰W原子之間的距離,導致*NO3和*NO2以雙齒配體的形式吸附在W活性位點上,該吸附形式比原始WO3的單齒配體的吸附形式更加強烈,利于后續還原反應。此外,引入的WN促進了H2O離解為NO2氫化提供了必要的質子,從而實現了一個高效地硝酸根還原制氨過程。該研究工作開發了一種簡單有效的異質結構策略,以調節NOx的吸附和氫化,從而提高從NO3-還原合成NH3的效率。

本文要點

要點一:通過密度泛函理論(DFT)計算發現,將WN局部引入WO3基體中形成WN/WO3異質結構可以縮短WO3中相鄰W原子的距離,這將使得*NO3和*NO2更傾向于通過雙齒配體的形式吸附在W活性位點上,該吸附形式比原始WO3的單齒配體的吸附形式更加強烈,從而提高對*NOx的吸附。此外,WN/WO3中的WN物種可以促進H2O解離以提供質子,并且WN/WO3異質結構的形成抑制了WN的析氫(HER)過程。優化的*NO2吸附和足夠的質子提供導致*NO2在WN/WO3上氫化的反應能壘降低,從而有利于NH3的生成。

要點二:通過水熱法和高溫氮化處理成功地制備了WN/WO3納米片。XRD、SEM、TEM、XPS和XANES表征表明,無定形WN物種已被原位引入WO3納米片中,形成復合異質結構。在1M NaOH和0.1M NaNO3的電解液中,與單獨的WO3(55.9 ± 3.2%)和WN(59.9 ± 0.6%)相比,所制備的WN/WO3納米片生成NH3的法拉第效率極大地提高了(88.9 ± 7.2%)。NH3生成的產率為8.4 mg h?1 cm?2,高于大多數報道的材料。

要點三:采用原位傅立葉變換紅外光譜(FT-IR)進一步驗證了催化反應的機理。從FT-IR光譜可以清楚地觀察到,WO3在*NO3、*NO2和H2O等物種的振動帶處表現出最弱的信號,WN具有最強的信號,而WN/WO3表現出介于兩者之間的信號強度。這些實驗結果表明,將WN引入WO3中可以改善NO3和*NO2中間體的吸附,并促進H2O的離解提供質子,這與DFT計算一致。這也是在WN/WO3納米片上NH3產量提高的主要原因。

圖文導讀

Figure 1. (a) The atomic structures and the possible adsorption configuration of *NO3 and *NO2. (b) The possible adsorption configuration of *NO3 and *NO2 on the WO3 surface. (c) The possible adsorption configuration of *NO3 and *NO2 on the WN surface.

Figure 2. DFT calculations. (a) Surface atomic structures of WO3, WN/WO3, and WN. (b) The adsorption configurations of *NO3 and *NO2 intermediates on WO3, WN/WO3, and WN surfaces. (c) The adsorption energies of *NO3 and *NO2 intermediates on WO3, WN/WO3, and WN. (d) Reaction Gibbs free energies for different reaction intermediates on the surfaces of WO3, WN/WO3, and WN. (e) The reaction Gibbs free energy changes (ΔG) of the rate-determining step (RDS) over WO3, WN/WO3, and WN. (f) H2O dissociation process on WO3 and WN. (g) HER process on WO3, WN/WO3, and WN.

Figure 3. Structure characterizations. (a) XRD patterns of WO3, WO3-400, WO3-500, and WO3-600; (b–e) SEM images of (b) WO3, (c) N-WO3, (d) WN/WO3, and (e) WN; (f) TEM and (g) HR-TEM images of WO3; (h) TEM and (i) HR-TEM images of WN; (j) TEM image and the selected area electron diffraction (SAED) of WN/WO3; (k) HR-TEM and enlarged HR-TEM images of WN/WO3; inset is the corresponding FFT diffractions; (l) HAADF-STEM image of WN/WO3 and corresponding EDX elemental maps of W, N, and O. (m) Structure evolution process of WO3 nanosheets under different nitriding temperatures.

Figure 4. Surface chemical state and electronic state investigations. (a–c) High-resolution XPS spectra of (a) W 4f, (b) O 1s, and (c) N 1s. (d) Normalized W L-edge XANES spectra, (e) derivative-normalized W L-edge XANES spectra, and (f) Fourier transform magnitudes in R space of the W L3-edge for WO3, WN/WO3, WN, and W powder.

Figure 5. The NH3 production performances over WO3, N-WO3, WN/WO3, and WN. (a) The LSV curves during NO3RR. (b) The LSV-derived Tafel slopes. (c) The electrochemical impedance spectra (inset is the fitting equivalent circuit model, Rs is solution resistance, Rct is change-transfer resistance, CPE is constant phase element). (d) The electrochemical active surface areas. (e) Faraday efficiencies of NH3 production under different potentials. (f) Partial current density of NH3 production under different potentials. (g) Yield rate of NH3 at different potentials. (h) Cyclic stability of WN/WO3 at the potential of –0.7 V vs. RHE. (i) The performance comparison of WN/WO3 with other reported catalysts.

Figure 6. In-situ electrochemical characterizations. (a-c) In-situ FT-IR spectra of (a) WO3, (b) WN/WO3, and (c) WN at different applied potentials. (d) The comparison of in-situ FT-IR spectra for WO3, WN/WO3, and WN at the potential of ?0.7 V vs. RHE. (e) The consumption of *NO3 intermediate over WO3, WN/WO3, and WN surfaces at different applied potentials. (f) The generation of *NO2 intermediate over WO3, WN/WO3, and WN surfaces at different applied potentials. (g) H2O dissociation over WO3, WN/WO3, and WN surfaces at different applied potentials.

文章結論

構建了WN/WO3復合納米片,以改善*NOx中間體的吸附和氫化,從而大大提高了硝酸根還原合成氨的效率。理論計算表明,與WO3相比,WN/WO3具有更短的相鄰W原子的原子距離,這導致*NO3和*NO2以雙齒配體而不是單齒配體的形式吸附在W活性位點,從而使得對于*NOx的吸附增強。此外,WN/WO3中的WN物種可以促進H2O解離以提供更多的質子。優化的*NO2吸附和充足的質子提供降低了*NO2氫化的反應能壘,從而有利于NH3的生成。與單獨的WO3和WN相比,所制備的WN/WO3納米片表現出88.9 ± 7.2%的高FE和8.4 mg h?1 cm?2的NH3產率,在?0.7 V vs.RHE下的部分電流密度為113.2 mA cm?2。該性能優于大多數報道的催化劑。這項工作為NO3?電化學還原合成NH3提供了一種高活性的W基催化劑,為NO3-還原電催化劑的設計提供了一個簡單而高效的策略。

文章鏈接

Tungsten Nitride / Tungsten Oxide Nanosheets for Enhanced Oxynitride Intermediate Adsorption and Hydrogenation in Nitrate Electroreduction to Ammonia

Zhencong Huang, Baopeng Yang*, Yulong Zhou, Wuqing Luo, Gen Chen, Min Liu, Xiaohe Liu, Renzhi Ma, and Ning Zhang*

https://doi.org/10.1021/acsnano.3c07734

分享到